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Abstract

Training classifiers is difficult with severe class imbalance, but many rare events are
the culmination of a sequence with much more common intermediate outcomes. For
example, in online marketing a user first sees an ad, then may click on it, and finally
may make a purchase; estimating the probability of purchases is difficult because of
their rarity. We show both theoretically and through data experiments that the more
abundant data in earlier steps may be leveraged to improve estimation of probabilities
of rare events. We present PRESTO, a relaxation of the proportional odds model for
ordinal regression. Instead of estimating weights for one separating hyperplane that
is shifted by separate intercepts for each of the estimated Bayes decision boundaries
between adjacent pairs of categorical responses, we estimate separate weights for each
of these transitions. We impose an L1 penalty on the differences between weights for
the same feature in adjacent weight vectors in order to shrink towards the proportional
odds model. We prove that PRESTO consistently estimates the decision boundary
weights under a sparsity assumption. Synthetic and real data experiments show that
our method can estimate rare probabilities in this setting better than both logistic
regression on the rare category, which fails to borrow strength from more abundant
categories, and the proportional odds model, which is too inflexible.

1 Introduction

Estimating probabilities of rare events is known to be difficult due to class imbalance. How-
ever, sometimes these events are the culmination of a sequential process with intermediate
outcomes. For example, (1) in online marketing, a customer is first served an ad, then may
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click on it, then may indicate interest in making a purchase (by “liking" the product, for
example), and finally may make a purchase. (2) In health and medicine, many outcomes
can be encoded as ordered categorical variables, like reported quality of life and disease
progression [Norris et al., 2006]. (3) Sales of high-price durable goods typically follow a
sales funnel [Duncan and Elkan, 2015]. For example, when buying a car often a potential
buyer first comes in to see a car, may take a test drive, and finally may buy the car.

In many of these cases, the intermediate events are much more common than the rare
events. Though these intermediate events may not be of direct interest, if the features that
contribute to the probability of advancing through earlier classes also contribute to the
probability of advancing through later classes, then the more abundant intermediate events
can be leveraged to improve estimation of the rare event probabilities.

The proportional odds model [McCullagh, 1980], also called the ordered logit model
[Cameron and Trivedi, 2005, Section 15.9.1], satisfies, for ordinal outcomes k ∈ {1, . . . ,K−
1}

log

(
P (y ≤ k | x)

P (y > k | x)

)
= αk + β>x, (1)

where β ∈ Rp is a vector of weights and x ∈ Rp is a vector of features. This implies that
for all k ∈ {1, . . . ,K − 1}

pk(x) := P (y ≤ k | x) = F
(
αk + β>x

)
, (2)

where F (·) is the logistic cumulative distribution function, F (t) = exp{t}/[1 + exp{t}].
Notice that αk + β>x is the Bayes decision boundary for the binary random variable
1 {y ≤ k} | x. This problem could instead be cast as K − 1 binary classification problems
of the form (2) for adjacent classes:

log

(
P (y ≤ k | x)

P (y > k | x)

)
= αk + β>k x, k ∈ {1, . . . ,K − 1}. (3)

The condition that the weight vectors βk of the separating hyperplanes in (3) are all equal,
as in (1), has been called the proportional odds assumption [McCullagh, 1980] or the parallel
regression assumption [Greene, 2012, Section 18.3.2]. One way to motivate this model is
by supposing that the response is driven by a latent (unobserved) variable U ,

U = β>x+ ε, (4)

where ε has a standard logistic distribution and is independent of x. Response k is observed
if and only if −αk ≤ Ui < −αk−1 (where we define α0 := −∞ and αK :=∞). This model
leads to (2). (See Section 3.3.2 of Agresti 2010 for a more detailed explanation.)

Because the proportional odds model assumes that the decision boundaries between
adjacent classes are all governed by the same hyperplane defined by β (separated only by
different intercepts αk), it assumes that the decision boundary between any two classes
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perfectly explains the decision boundary between any two other classes, other than an
intercept term. If a rare event has much more common intermediate events before it,
this model can therefore be very useful for better estimating the parameters of the model,
and therefore better estimating the rare event probabilities. However, it could be that
the proportional odds assumption is too rigid to be realistic, because observed features
may have varying influence at different decision boundaries. For example: (1) in online
marketing, users may click on an ad only to realize that the product is not what they
were expecting, resulting in a particularly low probability of purchase. (2) For expensive
goods like a home or car, potential buyers may express interest by going on a tour or
taking a test drive purely out of curiosity; this may be distinct from their level of interest
in actually making a purchase. (3) Students may place weights on different factors when
deciding whether to apply to graduate school than they did when deciding whether to apply
to an undergraduate program—they may have more appealing alternatives to additional
schooling, they may face new financial or personal constraints because they are older, etc.

In each of these settings, if specific features vary in relevance for different decision
boundaries while other features have about the same influence at every boundary, the pro-
portional odds assumption may be too strong. Violations or relaxations of the proportional
odds assumption along the lines of (3) have previously been considered by, for example,
Brant [1990]. Peterson and Harrell Jr [1990] developed partial proportional odds models,
which allow the proportional odds assumption to hold for some features but not others, an
idea previously mentioned by Armstrong and Sloan [1989]. (See Section 3.6.1 of Agresti
2010 for a textbook-level discussion). These relaxations have not been widely adopted be-
cause fitting separate weights for each outcome is too flexible unless p(K − 1)� n and all
classes are reasonably common (and we discuss additional difficulties of this kind of model
in Sections 3.1 and 4.1).

1.1 Our Contributions

In this paper we propose relaxing the proportional odds assumption as in (3), but controlling
the amount of relaxation by placing `1 penalties on the differences in weights corresponding
to the same features in adjacent βk vectors, in a way that is reminiscent of the fused lasso
[Tibshirani et al., 2005]. This model allows us to borrow strength from outcomes where
data is much more abundant to improve rare probability estimates when outcomes are
much more rare without making the strong assumption that the weights in these models
are exactly equal. In particular, it allows for the proportional odds model to hold for some
specific features in some adjacent pairs of decision boundaries, but not others.

We formalize the intuitive argument we outline above—that the proportional odds model
allows for precise estimation of the β vector as long as at least two adjacent classes are
fairly common, and this allows for improved estimation of rare probabilities at the end of
the sequence—through theoretical results in Section 2. Motivated by this argument but
skeptical of the proportional odds assumption holding exactly, we propose PRESTO in
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Section 3 and prove that it consistently estimates β1, . . . ,βK−1 under a sparsity assumption
in Section 3.1. In Section 4 we demonstrate through synthetic and real data experiments
that PRESTO can outperform both logistic regression and the proportional odds model,
both in settings where the differences in adjacent βk vectors are sparse, as PRESTO
assumes, and in settings where these differences are not sparse. Before we move on from
the introduction, we review related literature.

1.2 Related Work

The difficulty of classification with class imbalance has been well-known for decades. John-
son and Khoshgoftaar [2019] provide a recent review focusing on deep learning methods for
handling class imbalance, and they also provide references for many other ways of dealing
with class imbalance. One particularly closely related work is Owen [2007], which explores
how logistic regression handles a vanishingly rare class. A particularly popular approach,
SMOTE [Chawla et al., 2002], has its own recent review paper [Fernández et al., 2018].

Tutz and Gertheiss [2016] discuss the possibility of penalizing differences in weights
between adjacent models, including briefly proposing an `1 penalty between weights in
corresponding categories for proportional hazard models, though this is not the focus of
their article and they only mention the idea very briefly without investigating it.

Wurm et al. [2021] propose a generalization of a proportional odds model (and imple-
ment it in the R package ordinalNet) that allows for the possibility that adjacent categories
have equal (or very close) weights, but their method differs from ours. The most closely
related model Wurm et al. propose is an over-parameterized semi-parallel model with both
a matrix of separate parameters for each level, an approach reminiscent of Peterson and
Harrell Jr [1990]. This results in more flexible, less structured models than our approach,
which assumes similarity between adjacent βk vectors. Further, Wurm et al. [2021] do not
investigate the theoretical properties of their model, or the use of their model for improving
estimates of rare event probabilities.

Ugba et al. [2021] and Pößnecker and Tutz [2016] implement an `2 rather than `1 penalty
between weights in models for adjacent decision boundaries. However, these works also focus
on ordinal regression more generally, while we focus both theoretically and in simulations on
leveraging common classes to improve estimated probabilities of rare events. Further, the
`1 penalty, which imposes sparse differences, allows the proportional odds assumption to
hold for some features and decision boundaries and not others, while an `2 penalty relaxes
the proportional odds assumption for all features but regularizes the relaxation.

2 Motivating Theory

We present the following theoretical results to motivate PRESTO. The thrust of our moti-
vation is as follows: (1) Logistic regression does arbitrarily badly as class imbalance worsens
(Theorem 4 in the supplement). (2) However, as one would expect, a logistic regression
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model’s ability to estimate probabilities improves when the parameters β are known (The-
orem 1). (3) The proportional odds model allows for precise estimation of β as long as two
adjacent classes are reasonably common, even if the remaining classes are arbitrarily rare
(Theorem 2). (4) Taking 2 and 3 together, our conclusion is that we can better estimate
probabilities of rare events by using a method that leverages data from decision boundaries
between abundant classes to better estimate decision boundaries near rare classes. (Both
the proportional odds model and PRESTO leverage the data in this way.)

Before we present our results, we discuss the metrics we will use in our results and some
of the assumptions we will make.

2.1 Preliminaries

Our goal is to characterize and compare the prediction error of estimated conditional prob-
abilities from both logistic regression and the proportional odds model when one class is
rare. There are many settings where estimating rare probabilities accurately (as opposed
to, for example, predicting class labels accurately) is important. For example, in online
advertising, advertisers bid on the price to display an ad to a given user. Advertisers could
bid optimally if they knew the true probability each user would click a given ad, so they’d
like to estimate these probabilities as precisely as possible [He et al., 2014, Zhang et al.,
2014]. Another example is public policy, where scarce resources may be allocated based on
estimated probability of bad outcomes [Von Wachter et al., 2019]. To prioritize optimally,
precisely estimated probabilities are needed, not just accurate labels.

A natural metric in an estimation setting is mean squared error, E
[
(π(x)− π̂(x))2

]
,

where π(x) is the actual probability of a rare event conditional on x and π̂(x) is an estimate.
Further, we leverage asymptotic statistics and present results for large-sample estimators.
We define the notions of asymptotic mean squared error we will use below:

Definition 1. Let θ̂n be a maximum likelihood estimator for a parameter θ ∈ R from
a sample size of n. Under regularity conditions, the sequence of random variables {

√
n ·

(θ̂n − θ)} converges in distribution to a Gaussian random variable. Then we define the
asymptotic mean squared error of θ̂n to be (suppressing n from the notation)

Asym.MSE(θ̂) := E
[(

lim
n→∞

√
n
[
θ̂n − θ

])2]
.

Asymptotic metrics are commonly used to compare the performance of estimators. The
asymptotic relative efficiency of two estimators is the ratio of their asymptotic variances,

Asym.Var(θ̂) := Var
(

lim
n→∞

√
n
[
θ̂n − θ

])
,

which is equal to Asym.MSE(θ̂n) for the (asymptotically unbiased) maximum likelihood
estimators we consider. See Section 10.1.3 of Casella and Berger [2021], Section 8.2 of
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van der Vaart [2000], or Section 4.4.5 of Greene [2012] for textbook-level discussions. The
asymptotic MSE could also be used as an estimator of the MSE for large (but finite) n,
under the heuristic reasoning that for large n,

MSE(θ̂) =
1

n
E
[(√

n ·
[
θ̂ − θ

])2]
≈ 1

n
E
[(

lim
n→∞

√
n ·
[
θ̂ − θ

])2]
=

1

n
Asym.MSE(θ̂).

See Section 4.4 of Greene [2012], Section 7.3 of Hansen [2022], or Section 3.5 of Wooldridge
[2002] for more discussion of this kind of finite-sample estimation using asymptotic quanti-
ties.

We briefly present and discuss some of our assumptions.

• Assumption X(A): The random vectors xi ∈ Rp are independent and identically
distributed (iid) for i ∈ {1, . . . , n}, each with probability measure dF (x) with mea-
surable, bounded support S ⊂ A ⊆ Rp, with Cov (X) positive definite.

• Assumption Y (K): The response yi ∈ {1, . . . ,K} is distributed conditionally on
xi as in the proportional odds model (1). (Note that if K = 2, this is equivalent to
the logistic regression model.) All classes have positive probability for all x on the
support of xi (equivalently, the intercepts strictly differ: α1 < . . . < αK−1.)

Assumption X(A) allows a very broad class of distributions, including both discrete
and continuous random variables. Notice that the boundedness assumption within X(A)
implies that the matrix X̃ := (1,X) (where 1 is an n-vector of ones) has a finite maximum
eigenvalue. When we will refer to it, we call it λmax and write Assumption X(A, λmax).

From (2) we see that in the proportional odds model if the intercepts strictly differ
(α1 < . . . < αK−1) then for any x all of the classes have conditional probability strictly
between 0 and 1. That said, if the support ofX is unbounded then all of the probabilities for
individual classes can become arbitrarily close to 0 or 1. Under Assumption X(A), however,
we can strictly bound quantities like supx∈S{πk(x)} (where πk(x) := pk(x) − pk−1(x) =
P(y = k | x)) away from 1 or 0.

Theorem 1 holds under Assumption X([0,∞)p), though for any bounded S ⊆ Rp, there
is some finite a one could add to each coordinate to shift S to a subset of [0,∞)p; Theorem
1 would then apply to these translated features.

2.2 Theorem 1

Theorem 1 suggests a possible way to circumvent the problem of class imbalance. We
compare the typical logistic regression intercept estimate α̂ to the quasi-estimated estimator
α̂q obtained when one estimates only the intercept of the logistic regression model with a
known β. We also compare the resulting estimators of conditional probabilities for any
z ∈ Rp: the usual logistic regression estimator π̂(z) and π̂q(z), the estimator when β is
known. Theorem 1 proves the reasonable intuition that α̂q must be a better estimator than
α̂, and likewise for π̂q(z) and π̂(z).
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Theorem 1. Assume X([0,∞)p, λmax) and Y (2) hold. Let π(x) := P(y = 2 | x), and let
πmin := infx∈S {π(x) ∧ 1− π(x)}. Then

1.

Asym.MSE(α̂)−Asym.MSE(α̂q)

[Asym.MSE(α̂q)]
2 ≥ ∆

where

∆ :=
4π2min(1− πmin)2 ‖E [X]‖22

λmax
,

and

2. For any z ∈ Rp \ {z∗}, where

z∗ :=
E [Xπ(X)[1− π(X)]]

E [π(X)[1− π(X)]]
,

it holds that
Asym.MSE(π̂q(z)) < Asym.MSE(π̂(z)).

(For z∗, the above holds with ≤ rather than <.)

Examining the first result, it is sensible that the gap between the asymptotic variances
of the two estimators vanishes as πmin vanishes because if min{π1(x), 1− π1(x)} becomes
very small on the bounded support, then the imbalance between the two classes potentially
becomes very large, and estimating the intercept becomes difficult regardless of whether or
not β is known. As the class balance improves (πmin becomes closer to its upper bound
1/2), the guaranteed gap between Asym.MSE(α̂) and Asym.MSE(α̂q) becomes larger.

2.3 Theorem 2

Theorem 1 suggests that if only we could estimate β very well, we could improve our
estimated probabilities even in the face of class imbalance. Theorem 2 suggests a way to
leverage abundant data among other classes to do this.

In the proportional odds model (1), Rp is partitioned into regions with separating hy-
perplanes defined by β, which we note are Bayes decision boundaries: for x ∈ Rp such that
αk + β>x = 0, we have pk(x) = 1/2.

Consider the setting of ordered categorical data generated by the proportional odds
model with categories 1 and 2 similarly common over the support of a bounded distribution
of xi and categories 3, . . . ,K all rare. In this setting, for many of the observed values of
xi, the probabilities of being in class 1 or 2 will both be close to 1/2. Intuitively it should
be relatively easy to estimate β and α1, the parameters that define the Bayes decision
boundary between classes 1 and 2, and therefore p1(xi). Theorem 1 suggests this should
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help us in estimating the rare class probabilities. In Theorem 2, we prove that even if class
K becomes arbitrarily rare, as long as the first two classes are reasonably well balanced,
the proportional odds model still learns β quite well.

Theorem 2. Assume X(Rp) and Y (3) hold. Assume for all x ∈ S it holds that |πk(x) −
1/2| ≤ ∆ for k ∈ {1, 2} for some ∆ ∈ (0, 1/2) and let M := supx∈S‖x‖2 (notice that X(Rp)
ensures that M <∞). Suppose supx∈S{π3(x)} = πrare, where πrare is no greater than

min


1

2

(
1

2
−∆

)(
1

2
+ ∆

)
,

λmin

(
Iββ − 2

Iβα1I
>
βα1

Iα1α1

)
3M2 (M + 2)

 , (5)

where λmin(·) denotes the minimum eigenvalue of · and Iββ − 2
Iβα1I

>
βα1

Iα1α1
is a symmetric

matrix composed of terms from the Fisher information matrix for the proportional odds
model (see the definitions of these terms in Equations 8, 9, and 10 in the appendix). Then
there exists C <∞ not depending on πrare such that for any fixed v ∈ Rp,

1

v>v
Asym.MSE

(
v>β̂

prop. odds) ≤ C.
Theorem 2 shows that in contrast to logistic regression, the proportional odds model

still learns β within a fixed precision even as πrare vanishes.

Remark 1. We briefly discuss the upper bound (5). For this bound to make sense, it must

hold that the symmetric matrix Iββ − 2
Iβα1I

>
βα1

Iα1α1
is positive definite so that its minimum

eigenvalue is positive. The matrix S := Iββ −
Iβα1I

>
βα1

Iα1α1
is the Schur complement of Iα1α1 =

M1 in the submatrix (
Iα1α1 I>βα1

Iβα1 Iββ

)
(6)

of the Fisher information matrix Iprop. odds(α,β) for the proportional odds model (see
Lemma 5 in the appendix). Note (6) is s a principal submatrix of the positive definite
Iprop. odds(α,β), so is positive definite by Observation 7.1.2 in Horn and Johnson [2012].
From (8) we also know that Iα1α1 > 0, so S is positive definite by Theorem 1.12 in Zhang
[2005]. It seems plausible that

Iββ − 2
Iβα1I

>
βα1

Iα1α1

= S −
Iβα1I

>
βα1

Iα1α1

is also positive definite because Iββ is the inverse of the asymptotic covariance matrix of
β̂

ideal
, the maximum likelihood estimator of β when α1 and α2 are known. We expect
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that Cov(β̂
ideal

) would be small (and the eigenvalues of Iββ would be large) in this setting
because we can estimate β well due to the abundant observations in classes 1 and 2 (ensured
if ∆ is not too large), so we should be able to learn the decision boundary between these
classes well. If the eigenvalues of Iββ are indeed large, it might be reasonable to expect

Iββ − 2
Iβα1I

>
βα1

Iα1α1
to be positive definite. In Remark 3 in the appendix, we present more

detailed analysis as well as the results of synthetic experiments that indicate that it is

plausible both that Iββ − 2
Iβα1I

>
βα1

Iα1α1
is positive definite and that the upper bound (5) is

reasonable.

3 Predicting Rare Events by Shrinking Towards proportional
Odds (PRESTO)

Theorems 1 and 2 suggest a path to improve estimated probabilities for a rare event that
is at the end of an ordered sequence: use the more common events that come before it
to improve the estimation of the decision boundary affecting the rare class. In practice,
however, the proportional odds model assumption is strong and unlikely to hold in many
settings. PRESTO allows for this assumption to be relaxed; instead of assuming the
β vectors governing the decision boundaries are identical, we assume they are in general
different, but with differences that are (approximately) sparse.

One concrete model to motivate this is a relaxation of (4) along the lines of (3). Suppose
that U1 := U as defined in (4) (with β1 = β), and it still holds that an observation is in
class 1 if U1 ≥ −α1. However, for k ∈ {2, . . . ,K − 1}, outcome k is observed if and only if
−αk ≤ Uk < −αk−1+ψ>k x for sparse vectors ψ2, . . . ,ψK−1 ∈ Rp satisfying ψk = βk−βk−1,
so Uk = Uk−1 + ψ>k x for k ∈ {2, . . . ,K − 1}. Note that this is within the scope of (3),
but we assume a structure on the differing βk vectors rather than allowing for arbitrary
differences.

Assuming sparse differences in adjacent βk vectors in this way suggests the following
optimization problem for data X = (x1, . . . ,xn)> and y = (y1, . . . , yn):

arg min
β,α

{
− 1

n

n∑
i=1

log

[
F
(
αyi + β>yixi

)
− F

(
αyi−1 + β>yi−1xi

)]

+ λn

 p∑
j=1

|βj1|+
p∑
j=1

K−1∑
k=2

|βjk − βj,k−1|

} (7)

where we define αK := ∞, α0 := −∞ and β0 := 0. The penalties on the |βj1| terms
are sufficient to regularize all of the weights given the penalties on the difference terms
starting from the β1 vector, improving parameter estimation. Like the proportional odds
model and the generalized lasso [Tibshirani and Taylor, 2011] optimization problem, (7) is
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strictly convex if and only if αyi + β>yixi > αyi−1 + β>yi−1xi for all i [Pratt, 1981]. This
can be violated if the decision boundaries, which are not parallel, cross in the support of
X. In Section 4.1, we discuss the practical issues this presents when implementing relaxed
proportional odds models like PRESTO, and in the next session, we prove PRESTO is
consistent relying in part on an asumption that these decision boundaries do not cross in
the support of X. See Appendix G for details on how we estimate PRESTO in practice.

3.1 Theoretical Analysis

In this section, we present Theorem 3, which shows that PRESTO is a consistent estimator
of β1, . . . ,βK−1 under suitable assumptions. Before stating Theorem 3, we present and
briefly discuss some of the new assumptions we will make.

• Assumption S(s, c): The distribution of yi | xi is distributed according to the
PRESTO likelihood (7), where the true coefficients θ∗ =

(
β>1 ,ψ

>
2 , . . . ,ψ

>
K−1

)> ∈
Rp(K−1) are s-sparse (have s nonzero entries for a fixed s not increasing in n or p).
Further, ‖θ∗‖∞ ≤ c for a fixed c.

• Assumption T (c): For all small enough ρ > 0, for all θ ∈ Rp(K−1) with ‖θ−θ∗‖1 ≤ ρ
it holds that none of the decision boundaries defined by θ and the true α1, . . . , αK−1
cross in S. Also, maxk∈{1,...,K−1} |αk| ≤ c.

The fixed sparsity assumption S(s, c) is helpful theoretically and also because without it
in higher dimensions it becomes increasingly difficult to have nonparallel decision boundaries
that do not cross. The first part of Assumption T (c) can be interpreted to mean that none
of the decision boundaries cross “too closely" to S. Other than these aspects, Assumptions
S(s, c) and T (c) are mild.

Theorem 3. In a setting with fixed K ≥ 3 and p = pn → ∞ as n → ∞ and satisfying
pn ≤ C1n

C2 for some C1 > 0 and C2 ∈ (0, 1), consider estimating PRESTO with penalty
λn = C3 log(pn[K − 1])/n for some C3 > 0. Suppose Assumption X(Rpn) holds and there
is some C4 < ∞ such that supx∈S‖x‖∞ ≤ C4 and Assumptions S(s, C4) and T (C4) hold.
Assume for some fixed b > 0 it holds that λ∗min := mink∈{1,...,K} λmin (Σk) > b, where
Σk := E

[
xix

>
i | yi = k

]
. Then PRESTO is a consistent estimator of β1, . . . ,βK−1.

Theorem 3 shows that under fairly mild regularity conditions and a sparsity assumption
in a high-dimensional setting, PRESTO consistently estimates all of the decision bound-
aries. That is, it is consistent both if the proportional odds assumption holds and in more
flexible settings, where the proportional odds model is unrealistic, under sparsity. Theorem
1 suggests this should be helpful for estimating rare class probabilities.
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Figure 1: Top left: MSE of estimated rare class probabilities for each method across all n = 2500 observa-
tions, across 700 simulations, in sparse differences simulation setting of Section 4.1, for intercept setting
yielding rare class probabilities of about 0.43% on average and sparsity 1/2. Remaining plots: ratios of MSE
for PRESTO divided by MSE of each other method for each of three sets of intercepts with sparsity 1/2
(PRESTO performs better if ratio is less than 1). All plots on log scale.
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Figure 2: Same plots as in Figure 1, but for uniform differences synthetic experiment in Section 4.2.
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4 Experiments

To illustrate the efficacy of PRESTO, we conduct two synthetic experiments and ex-
amine two real data sets1. In Section 4.1, we generate random y that have conditional
probabilities based on a relaxation of the proportional odds model with sparse differences
between adjacent decision boundary parameter vectors, rather than parameterizing all de-
cision boundaries with the same β. This setting is well-suited to PRESTO. In Section 4.2,
we show that PRESTO also performs well in a less favorable setting, where the differences
between adjacent decision boundaries are instead dense; nonetheless, PRESTO still out-
performs logistic regression and proportional odds models. Lastly, in Sections 4.3 and 4.4
we compare the performance of PRESTO to logistic regression and proportional odds at
estimating rare probabilities in real data experiments.

4.1 Simulated Data: Sparse Differences Setting

We repeat the following procedure for 700 simulations. First we generate data using n =
2500, p = 10, and K = 4. We draw a random X ∈ [−1, 1]n×p, where Xij ∼ Uniform(−1, 1)
for all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}. Then y ∈ {1, . . . ,K}n is generated according
to a relaxation of the proportional odds model; instead of (1), we generate probabilities
according to (3) where the βk are generated in the following way for sparsity settings of
η = 1/3, 1/2: first, we generate β1 by taking the vector (0.5, . . . , 0.5)>, but setting all of
the entries equal to 0 randomly with probability 1− η for each entry independently. Then
we set βk = βk−1 +ψk, k ∈ {2, . . . ,K − 1}, where ψk ∈ Rp are iid random vectors for
each k ∈ {2, . . . ,K − 1} generated according to the following distribution:

ψkj =


0, with probability 1− η,
0.5, with probability η/2,
−0.5, with probability η/2,

j ∈ {1, . . . , p}.

We consider three possible sets of intercepts: α = (0, 3.5, 5.5), (0, 4, 6), and (0, 4, 6.5), so
that the first two categories are common and the remaining categories are rare. The final
rare class is the one of interest; in the three settings, the average proportions of observations
falling in the rare class are 0.61%, 0.37%, and 0.23%, respectively, for the η = 1/3 setting
and 0.71%, 0.43%, and 0.28% for the η = 1/2 setting.

The fact that the decision boundaries may cross in the support ofX, which would mean
that for such x some class probabilities are defined to be negative, puts practical limits on
the magnitude of ψk in simulations. (See Section 3.6.1 of Agresti 2010 for a discussion.)

1Simulation studies were conducted in R Version 4.2.1 running on macOS 10.15.7. We also used the R
packages MASS (version 7.3-58.1) and ordinalNet (version 2.12), available for download on CRAN, and the
R simulator package, available for download at https://github.com/jacobbien/simulator. We imple-
mented PRESTO by slightly modifying the code for ordinalNet; see Section G the appendix for details.
We will release all code by the camera-ready deadline.
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Also, for this reason, in each simulation we check whether or not the conditional probabilities
are positive for each class for every sampled x; if not, we generate new ψ2, . . . ,ψK−1 for
a limited number of iterations, ending the simulation study in failure if no suitable ψk can
be found in a reasonable number of attempts. The parameters we used generated positive
probabilities for all observations across all simulations.

We then estimate a model for each method; for logistic regression, we estimate the binary
classification problem of whether or not each observation is in class K, and for proportional
odds and PRESTO, we fit a full model on all K responses. For PRESTO, we use 5-fold
cross-validation to choose a value of λ among 20 choices, selecting the λ with the best out-
of-fold Brier score (other metrics, like negative log likelihood, failed because some values
of λ in some folds resulted in models yielding negative probabilities, so these other metrics
were undefined). The 20 candidate values of λ are generated in the following way: the
largest λ value, λ20, is the smallest λ for which all of the estimated sparse differences equal
0; the smallest λ value is set to λ1 = 0.01 · λ20, and the remaining λ values are generated
at equal intervals on a logarithmic scale between these two values.

Each of these models yields estimated probabilities that each observation lies in class
K. In the final step of each simulation run, we compute the mean squared error of these
estimated probabilities for each method.

In Figure 1, we show boxplots of the empirical mean squared errors for each method
in the setting where the rare class is observed in 0.43% of observations when η = 1/2. In
order to see how the methods compare pairwise on each simulation, we also show boxplots
of the ratio between the mean squared error of PRESTO and the other two methods in
each of the three simulation settings. We also conduct one-tailed paired t-tests of the alter-
native hypothesis that the mean MSE for PRESTO was lower than each of the competitor
methods in each setting; all 12 of the p-values (provided in Table 3 of Appendix B) were
below 10−5. Finally, in Appendix B we also provide a table with the mean and standard
errors for the MSE of each method in each simulation setting, as well as boxplots like the
one in the top left corner of Figure 1 for the other two intercept settings and all boxplots
for the η = 1/3 setting.

We see that PRESTO typically estimates these rare probabilities better than logistic
regression, which despite being correctly specified struggles with class imbalance and does
not draw strength from estimating the easier decision boundary between classes 1 and 2,
and the proportional odds model, whose assumptions are not satisfied in this setting.

4.2 Simulated Data: Dense Differences Setting

In real data sets the differences between adjacent decision boundary parameter vectors
may not always be sparse, so we conduct another synthetic experiment in the same way
as in Section 4.1, except β1j ∼ Uniform(−.5, .5) and each ψkj ∼ Uniform(−.5, .5), iid
across j ∈ {1, . . . , p} and k ∈ {2, . . . ,K − 1}. This yields average rare class proportions of
0.62%, 0.36%, and 0.23% using the same intercepts as the experiments in Section 4.1. This
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setting can be considered “approximately" sparse in the sense that while no deviations will
exactly equal 0, some will be large and important to estimate, and some will be essentially
negligible.

Figure 2 and Table 1 summarize the results, along with additional figures and tables
in Appendix B. We again see that PRESTO outperforms both competitor methods by
statistically significant margins (except that PRESTO statistically ties the proportional
odds model in one setting).

Table 1: Calculated p-values for one-tailed paired t-tests for uniform differences simulation setting of Section
4.2 (statistically significant p-values indicate better performance for PRESTO).

Rare Class Proportion Logit p-value PO p-value

0.62% < 1e-04 < 1e-04
0.36% < 1e-04 2.42e-04
0.23% < 1e-04 0.21

4.3 Real Data Experiment 1: Soup Tasting

We conduct a real data experiment using the soup data set from the R ordinal package
[R. H. B. Christensen, 2019]. The data come from a study [Christensen et al., 2011] of par-
ticipants who tasted soups and responded whether they thought each soup was a reference
product they had previously been familiarized with or a new test product. The respondents
also stated how sure they were in their response on a three-level scale, yielding a total of
K = 6 possible ordered outcomes for n = 1847 observations. The outcome of interest
corresponds to the respondent being sure the tasted soup was the reference and is observed
in 228 observations (about 12% of the total). All of the features are categorical, and after
one-hot encoding we have p = 22 binary features related to the soup, the respondent, and
the testing environment2. This may be a promising setting for PRESTO because though
the responses have a well-defined ordering, it seems plausible that different features might
have different effects at different levels of respondent sureness.

We complete the following procedure 350 times: first, we randomly split the data into
training (90% of the data) and test (10%) sets. We estimate models using PRESTO, logistic
regression, and the proportional odds model on the training data and evaluate on the test
set.

We are interested in the accuracy of the rare class probabilities, but we can’t evaluate
rare probability MSE since we don’t observe the true probabilities. Brier score could be a
reasonable proxy, but it is known to be a poor metric in the presence of class imbalance

2The categorical predictors PRODID and RESP are omitted because in some splits not all levels of these
features are observed in the training set, making it impossible to estimate parameters for these features.
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[Benedetti, 2010]. Instead we estimate rare probability MSE using the following procedure.
For each method, we sort the estimated test set rare class probabilities and assign the
observations into 10 bins: the first 1/10 observations go in the first bin, and so on. Then
we estimate the mean squared error of the estimated probabilities by 1

n

∑n
i=1(ob(i)− π̂

(i)
1 )2,

where ob(i) is the observed rare class proportion in the bin containing observation i and π̂(i)1 is
the estimated rare class probability for observation i. This is similar to expected calibration
error [Naeini et al., 2015], though we use squared error rather than absolute error. 10 equal
frequency bins follows the default of the R CalibratR package that implements expected
calibration error [Schwarz and Heider, 2018].

By this metric, the mean error for PRESTO is 0.0096, 0.0157 for logistic regression and
0.0135 for proportional odds. Figure 3 displays boxplots of the results as in the synthetic
experiments which indicate that PRESTO typically outperforms the other methods. We
do not report p-values or standard errors since the observed samples are dependent (random
splits of the same data set).
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Figure 3: Left: Estimated MSEs of estimated rare class probabilities for each method across 280 random
draws of training and test sets in real data experiment from Section 4.3. Right: ratios of estimated MSE
for PRESTO divided by MSE of each other method (PRESTO performs better if ratio is less than 1).

4.4 Real Data Experiment 2: Diabetes

We present another real data experiment using the data set PreDiabetes from the R
MLDataR package [Hutson et al., 2022]. This data set contains n = 3059 observations of
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Table 2: Estimated rare class MSE for each method at each age cutoff in prediabetes real data experiment.

Age cutoff PRESTO Logit PO
30 0.001095549 0.010443706 0.009903144
35 0.005306542 0.024368822 0.022397283
40 0.018049663 0.048436103 0.049834974
45 0.062173756 0.116159268 0.118422832
50 0.125441153 0.211305468 0.213431380
55 0.235600869 0.334510770 0.338530124
60 0.353343723 0.412752902 0.417347807
65 0.378428563 0.445375361 0.444832225

patients who were eventually diagnosed with diabetes. Each observation consists of the age
at which the patient was diagnosed with prediabetes and diabetes as well as p = 5 covariates.
Given an age a, we form an ordinal variable based on the patient’s status of non-diabetic,
prediabetic, or diabetic at age a − 1. We do this for ages a ∈ {30, 35, 40, . . . , 65}. The
number of patients diagnosed with diabetes increases with a, so varying a allows us to
change the rarity of the rarest class in a natural way. The proportion of patients in the
data diagnosed with diabetes before age a = 30 is 0.92, and 50.93% of the patients were
diagnosed with diabetes before age a = 65.

We use PRESTO, logistic regression, and the proportional odds model to estimate the
probability that each patient was diagnosed with diabetes before age a for each a. Much
like our soup tasting data application, in each setting we take repeated random splits of
the data, using 90% of the data selected at random for training and 10% for testing. In
each iteration we again evaluate each method on the test data using the same estimator for
mean squared error of the estimated rare class probabilities. We repeat this procedure 35
times in each of the 8 settings.

We display the results in a plot in Figure 4. We also provide the mean MSEs for each
method at each age cutoff in Table 2. We see that PRESTO outperforms both logistic
regression and the proportional odds model in all of these settings. (For age cutoffs a = 29
and below we were unable to estimate the proportional odds model on all subsamples
because of the difficulty of having at least one observation from each class in both the
training and test sets). PRESTO seems to outperform the other methods at all class
rarities, though the performance gap increases as the rare class becomes less rare.

5 Conclusion

By leveraging data from earlier decision boundaries, but relaxing the rigid proportional
odds assumption, PRESTO can substantially improve estimation of the probability of rare
events, even when the assumption of sparse differences between adjacent decision boundary
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Figure 4: Left: Estimated MSEs of estimated rare class probabilities for each method across 280 random
draws of training and test sets in real data experiment from Section 4.3. Right: ratios of estimated MSE
for PRESTO divided by MSE of each other method (PRESTO performs better if ratio is less than 1).
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weight vectors does not exactly hold. Future work could explore `1 penalties for the coeffi-
cients themselves, not just the differences between the coefficients, to allow for simultaneous
feature selection and model estimation. Inference for PRESTO could also be possible by
extending the method for exact post-selection inference for the generalized lasso path by
Hyun et al. [2018] to our generalized linear model setting.
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We state Theorem 4, which shows that logistic regression does arbitrarily badly at
estimating rare class probabilities as the class imbalance increases, in Section A. In Section
B, we display summary statistics and additional figures for the observed mean squared
errors (MSEs) for each method from the synthetic data experiments from Sections 4.1 and
4.2. We provide the proofs of Theorems 1 and 4 in Section C. In Section D, we present
synthetic data experiments and analysis justifying the validity of one of the assumptions
of Theorem 2 in Remark 3, and we then prove Theorem 2. Theorems 1, 4, and 2 depend
on Lemma 5, which is stated at the beginning of Section C and proven in Section E. We
prove Theorem 3 in Section F. Finally, in Section G we provide implementation details for
estimating PRESTO.

A Theorem 4

It is well-known that class imbalance poses a major challenge for classifiers. Theorem 4
exhibits this concretely for logistic regression.

Theorem 4. Assume X(Rp, λmax) and Y (2) hold. Let π(x) := P(y = 2 | x), and assume
that supx∈S π(x) = πrare for some πrare ≤ 1/2. Then

1. for any fixed v ∈ Rp+1,

1

v>v
Asym.MSE

(
(α̂, β̂

>
)v
)
≥ 1

λmaxπrare
,

and

2. for any fixed z ∈ S,

Asym.MSE

(
π̂(z)

π(z)

)
≥ 1− πrare

πrare

1

λmax
.

Proof. Provided in Section C.2.

To give an example of applying part 1 of this result, consider the choice v = (0, 1, 0, . . . , 0).
Then we have that Asym.MSE

(
β̂1

)
≥ 1/(λmaxπrare), so β̂1 (or any other estimated coeffi-

cient) has arbitrarily large asymptotic mean squared error as πrare vanishes. Part 2 shows
that the same thing happens to the asymptotic mean squared error for the estimated prob-
abilities of the logistic regression estimator, when scaled by π(z).

B More Simulation Results

For more results from the synthetic experiments, see Tables 3, 4, and 5, and Figures 7, 6,
5, and 8.
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Table 3: Calculated p-values for one-tailed paired t-tests for sparse differences simulation setting of Section
4.1 (statistically significant p-values indicate better performance for PRESTO).

Rare Prop. Sparsity Logit p-value PO p-value

0.61% 1/3 5.19e-74 4.21e-19
0.71% 1/2 8.68e-48 3.38e-35
0.37% 1/3 3.08e-61 1.65e-03
0.43% 1/2 3.75e-64 2.57e-11
0.23% 1/3 3.34e-38 2.85e-06
0.28% 1/2 4.01e-52 4.71e-06

Table 4: Means and standard errors of empirical MSEs for each method in each of three intercept settings
in the sparse differences synthetic experiment setting of Section 4.1.

Rare Class Proportion Sparsity PRESTO Logistic Regression Proportional Odds

0.61% 1/3 3.03e-05 (1.1e-06) 6.90e-05 (2.1e-06) 3.64e-05 (1.4e-06)
0.71% 1/2 5.22e-05 (1.9e-06) 8.89e-05 (2.5e-06) 7.50e-05 (3e-06)
0.37% 1/3 1.40e-05 (6e-07) 5.66e-05 (2.4e-06) 1.49e-05 (6.1e-07)
0.43% 1/2 2.63e-05 (1e-06) 7.21e-05 (2.7e-06) 3.17e-05 (1.4e-06)
0.23% 1/3 6.15e-06 (2.6e-07) 5.74e-05 (3.8e-06) 6.56e-06 (2.8e-07)
0.28% 1/2 1.39e-05 (6.3e-07) 6.77e-05 (3.4e-06) 1.58e-05 (7.1e-07)

Table 5: Means and standard errors of empirical MSEs for each method in each of three intercept settings
in the uniform differences synthetic experiment setting of Section 4.2.

Rare Class Proportion PRESTO Logistic Regression Proportional Odds

0.62% 2.86e-05 (8.3e-07) 6.51e-05 (1.7e-06) 3.43e-05 (9.8e-07)
0.36% 1.33e-05 (4.4e-07) 5.36e-05 (2.2e-06) 1.43e-05 (5e-07)
0.23% 5.96e-06 (2.3e-07) 6.24e-05 (3.8e-06) 6.07e-06 (2.1e-07)
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Figure 5: MSE of predicted rare class probabilities for each method across all n = 2500 observations, across
700 simulations, in sparse differences synthetic experiment setting of Section 4.1 with sparsity 1/2. (These
plots are for the two intercept settings that weren’t shown in the main text for the sparsity setting of 1/2.
All plots on a log scale.)

25



1e−06

1e−05

1e−04

1e−03

PRESTO Logit PO

R
ar

e 
P

ro
ba

bi
lit

y 
M

S
E

Rare Proportion: 0.37%

0.01

0.10

1.00

10.00

Logit PO

M
S

E
 R

at
io

 (
P

R
E

S
TO

/O
th

er
)

Rare Proportion: 0.37%

0.01

0.10

1.00

10.00

Logit PO

M
S

E
 R

at
io

 (
P

R
E

S
TO

/O
th

er
)

Rare Proportion: 0.23%

0.03

0.10

0.30

1.00

3.00

Logit PO

M
S

E
 R

at
io

 (
P

R
E

S
TO

/O
th

er
)

Rare Proportion: 0.614%

Figure 6: Same as Figure 1, but for the simulations with sparsity 1/3.

26



3e−06

1e−05

3e−05

1e−04

3e−04

PRESTO Logit PO

R
ar

e 
P

ro
ba

bi
lit

y 
M

S
E

Rare Proportion: 0.614%

1e−06

1e−05

1e−04

1e−03

PRESTO Logit PO
R

ar
e 

P
ro

ba
bi

lit
y 

M
S

E

Rare Proportion: 0.23%

Figure 7: Same as Figure 5, but for the simulations with sparsity 1/2.
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Figure 8: MSE of predicted rare class probabilities for each method across all n = 2500 observations, across
700 simulations, in uniform differences synthetic experiment setting of Section 4.2. (These plots are for the
two intercept settings that weren’t shown in the main text.)
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C Statement of Lemma 5 and Proofs of Theorems 4 and 1

In Section C.1 we state Lemma 5, and we prove Theorems 4 and 1 in Section C.2.

C.1 Statement of Lemma 5

Theorems 4, 1, and 2 relate to the asymptotic covariance matrices of the maximum likeli-
hood estimators of the parameters of the proportional odds and logistic regression models.
Under mild regularity conditions, the asymptotic covariance matrix of any maximum like-
lihood estimator (when scaled by

√
n) is known to be the inverse of the Fisher information

matrix

−E
[

∂2

∂θθ>
L(θ)

]
,

where θ are the parameters estimated by the model and L(θ) is the log likelihood [Serfling,
1980, Section 4.2.2]. In the proof of Lemma 5, we calculate these Fisher information matrices
for the proportional odds and logistic regression models and verify the needed regularity
conditions.

Lemma 5. Assume that no class has probability 0 for any x ∈ S (equivalently, assume that
all of the intercepts in the proportional odds model (1) are not equal, so α1 < . . . < αK−1).
Assume that dF (x) has bounded support.

1. The Fisher information matrix for the maximum likelihood estimator of the propor-
tional odds model (1) is

Iprop. odds(α,β) =

Iprop. odds
αα

(
Iprop. odds
βα

)>
Iprop. odds
βα Iprop. odds

ββ

 ∈ R(K−1+p)×(K−1+p)
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where

Iprop. odds
αα (α,β) =



M1 −M̃2 0 · · · 0 0

−M̃2 M2 −M̃3 · · · 0 0

0 −M̃3 M3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · MK−2 −M̃K−1
0 0 0 · · · −M̃K−1 MK−1


, (8)

Iprop. odds
βα (α,β) =


Jx1 + J̃x2
Jx2 + J̃x3

...
JxK−1 + J̃xK

 , and (9)

Iprop. odds
ββ (α,β) =

K∑
k=1

(
Jxx

>
k + J̃xx

>
k

)
, (10)

where

Mk :=

∫
[pk(x)(1− pk(x))]2

(
1

πk(x)
+

1

πk+1(x)

)
dF (x), k ∈ {1, . . . ,K − 1},

(11)

M̃k :=

∫
pk(x)(1− pk(x))pk−1(x)(1− pk−1(x)) · 1

πk(x)
dF (x), k ∈ {2, . . . ,K − 1}

(12)

and

Jk :=

∫
πk(x)pk(x)[1− pk(x)] dF (x) ∈ R,

Jxk :=

∫
xπk(x)pk(x)[1− pk(x)] dF (x) ∈ Rp,

Jxx
>

k :=

∫
xx>πk(x)pk(x)[1− pk(x)] dF (x) ∈ Rp×p,

J̃k :=

∫
πk(x)pk−1(x)[1− pk−1(x)] dF (x) ∈ R,

J̃xk :=

∫
xπk(x)pk−1(x)[1− pk−1(x)] dF (x) ∈ Rp, and

J̃xx
>

k :=

∫
xx>πk(x)pk−1(x)[1− pk−1(x)] dF (x) ∈ Rp×p

for all k ∈ [K].
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2. The Fisher information matrix for the maximum likelihood estimator of the logistic
regression model predicting whether or not each observation is in class 1 is

I logistic(α1,β) =

I logistic
αα

(
I logistic
βα

)>
I logistic
βα I logistic

ββ

 = E
[
π1(X)[1− π1(X)]X̃X̃

>] ∈ R(p+1)×(p+1)

(13)
where X̃ :=

(
1 X

)
(an n-vector of all ones followed by X) and

I logistic
αα (α1,β) = M logistic

1 , (14)

I logistic
βα (α1,β) = Jx; logistic

1 + J̃x; logistic
2 , and (15)

I logistic
ββ (α1,β) = Jxx

>; logistic
1 + J̃xx

>; logistic
2 , (16)

where we define

M logistic
1 :=

∫
π1(x)(1− π1(x)) dF (x) (17)

and

Jx; logistic
1 :=

∫
xπ1(x)2[1− π1(x)] dF (x) ∈ Rp = Jx1 ,

Jxx
>; logistic

1 :=

∫
xx>π1(x)2[1− π1(x)] dF (x) ∈ Rp×p = Jxx

>
1 ,

J̃x; logistic
2 :=

∫
xπ1(x)[1− π1(x)]2 dF (x) ∈ Rp, and

J̃xx
>; logistic

2 :=

∫
xx>π1(x)[1− π1(x)]2 dF (x) ∈ Rp×p.

3. The information matrices Iprop. odds(α,β) and I logistic(α1,β) are finite and positive
definite, and the following convergences hold:

√
n ·
(
θ̂

prop. odds
1 − θ1

)
d−→ N

(
0,
(
Iprop. odds(α,β)

)−1)
and

√
n ·
(
θ̂

logistic
1 − θ1

)
d−→ N

(
0,
(
I logistic(α1,β)

)−1)
.

Further, because these information matrices are symmetric and positive definite, by
Observation 7.1.2 in Horn and Johnson [2012] the principal submatrices Iprop. odds

αα :=
Iprop. odds
αα (α,β), Iprop. odds

ββ := Iprop. odds
ββ (α,β), and I logistic

ββ := I logistic
ββ (α1,β) are all

positive definite.
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Proof. Provided in Section E.

Remark 2. Note that JK = 0 because 1 − pK (x) = 1 − P(y (x) ≤ K | x) = 0 for all x,
and similarly for JxK and Jxx>K . Likewise, J̃1 = 0 because p0 (x) = P(y (x) ≤ 0 | x) = 0 for
all x, and similarly for J̃x1 and J̃xx>1 .

We also take a moment to briefly establish some identities we will use later. For any
k ∈ {1, . . . ,K − 1},

Jxk + J̃xk+1 =

∫
xπk(x)pk(x)[1− pk(x)] dF (x) +

∫
xπk+1(x)pk(x)[1− pk(x)] dF (x)

=

∫
x [πk(x) + πk+1(x)] pk(x)[1− pk(x)] dF (x). (18)

Similarly,

Jxx
>

k + J̃xx
>

k+1 =

∫
xx> [πk(x) + πk+1(x)] pk(x)[1− pk(x)] dF (x),

so from (10) we have

Iprop. odds
ββ (α,β) =

K∑
k=1

(
Jxx

>
k + J̃xx

>
k

)
= J̃xx

>
1 +

K−1∑
k=1

(
Jxx

>
k + J̃xx

>
k+1

)
+ Jxx

>
K

=

∫
xx>π1(x) p0(x)︸ ︷︷ ︸

=P(y≤0|x)=0

[1− p0(x)] dF (x) +
K−1∑
k=1

(
Jxx

>
k + J̃xx

>
k+1

)

+

∫
xx>πK(x)pK(x)

1− pK(x)︸ ︷︷ ︸
=P(y≤K|x)=1

 dF (x)

=
K−1∑
k=1

∫
xx> [πk(x) + πk+1(x)] pk(x)[1− pk(x)] dF (x). (19)

C.2 Proofs of Theorems 4 and 1

Equipped with the results of Lemma 5, we proceed to prove Theorems 4 and 1. (Recall
that for square matrices A and B of equal dimension p, we say A � B if B−A is positive
semidefinite.)
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Proof of Theorem 4. 1. Note that the assumptions of Lemma 5 are satisfied. Since the
inverse of the asymptotic covariance matrix is

E
[
π(X)[1− π(X)]X̃X̃

>] � πrare(1− πrare)E
[
X̃X̃

>]
(where the second step is valid because t 7→ t(1 − t) is monotone increasing in t for
t ∈ [0, 1/2]), by Corollary 7.7.4 in Horn and Johnson [2012] the largest eigenvalue of
the inverse of the asymptotic covariance matrix is no larger than πrare(1−πrare)λmax.
Therefore

Asym.Cov
(

(
√
n · α̂,

√
n · β̂)

)
=
(
E
[
π(X)[1− π(X)]X̃X̃

>])−1 � (πrare(1− πrare)E
[
X̃X̃

>])−1
has smallest eigenvalue at least 1/[λmaxπrare(1−πrare)], which is larger than 1/[λmaxπrare],
again using Corollary 7.7.4 in Horn and Johnson [2012]. So for any v ∈ Rp+1,

Asym.Var
(

(α̂, β̂
>

)v
)

= v>Asym.Cov
(

(
√
n · α̂,

√
n · β̂)

)
v ≥ v>v

λmaxπrare
.

Finally, since we have already shown that (α̂, β̂
>

) is asymptotically unbiased, the
asymptotic MSE is equal to this asymptotic variance:

Asym.MSE((α̂, β̂
>

)v)) = E
[

lim
n→∞

(√
n ·
[
(α̂, β̂

>
)v − (α,β>)v

])2]
= E

[
lim
n→∞

(√
n ·
[
E
[
(α̂, β̂

>
)v
]
− (α̂, β̂

>
)v
])2

+ lim
n→∞

(√
n ·
[
(α,β>)v − E[(α̂, β̂

>
)v
])2 ]

= Asym.Var
(√

n
[
(α,β>)v − (α̂, β̂

>
)v
])

+ 0

≥ v>v

λmaxπrare
.

2. Because (α̂, β̂) 7→ π̂(z) is differentiable for all z ∈ Rp, by the delta method (Theorem
3.1 in van der Vaart 2000)

√
n · [π̂(z)− π(z)]

d−→ N
(

0, π(z)2 [1− π(z)]2
(

1, z>
) (
I logistic(α,β)

)−1 (
1, z>

)>)
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for any z ∈ Rp. Therefore

Asym.Var
(√
n · π̂(z)

)
= π(z)2 [1− π(z)]2

(
1, z>

) (
I logistic(α,β)

)−1 (
1, z>

)>
≥ π(z)2 [1− π(z)]2

∥∥∥(1, z>
)∥∥∥2

2
λmin

((
I logistic(α,β)

)−1)
=
π(z)2 [1− π(z)]2

∥∥(1, z>)∥∥2
2

‖I logistic(α,β)‖op

≥
π(z)2 [1− π(z)]2

∥∥(1, z>)∥∥2
2

πrare(1− πrare)
∥∥∥E [X̃X̃>]∥∥∥

op

(∗)
≥ π(z)2 [1− πrare]

2

πrare(1− πrare)λmax

=
π(z)2 [1− πrare]

πrareλmax
,

where λmin(·) denotes the minimum eigenvalue of ·, (∗) uses
∥∥(1, z>)∥∥2

2
≥ 1 and

π(z) ≤ πrare for all z ∈ S. This yields

Asym.Var

(√
n
π(x)− π̂n(x)

π(x)

)
=

1

π(x)2
Asym.Var

(√
n · π̂(z)

)
≥ 1− πrare

πrareλmax
,

where ‖·‖2 denotes the operator norm. Similarly to the previous result, π̂(z) is asymp-
totically unbiased and its asymptotic MSE is equal to its asymptotic variance:

Asym.MSE(π̂(x)) = E

[
lim
n→∞

(√
n · π(x)− π̂n(x)

π(x)

)2
]

= E

[
lim
n→∞

(√
n · E[π̂n(x]− π̂n(x)

π(x)

)2

+ lim
n→∞

(√
n · π(x)− E[π̂n(x]

π(x)

)2
]

= Asym.Var

(√
n
π(x)− π̂n(x)

π(x)

)
+ 0

≥ 1− πrare

πrareλmax
.

Proof of Theorem 1. 1. Again, the assumptions of Lemma 5 are satisfied. Lemma 5
shows that the asymptotic covariance matrix of the scaled maximum likelihood esti-
mates of the parameters of logistic regression (a special case of the proportional odds
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model with K = 2 categories) is

Asym.Cov

(√
n ·
(
α̂, β̂

)>)
=
(
I logistic(α,β)

)−1
=

I logistic
αα

(
I logistic
βα

)>
I logistic
βα I logistic

ββ

−1 ,
so in the case that β is known, we have

Asym.Var
(√
n · α̂q

)
=
(
I logistic
αα

)−1
=

1

I logistic
αα

.

If β is not known, then if I logistic
ββ is positive definite (and therefore invertible) the

formula for block matrix inversion yields

Asym.Var
(√
n · α̂

)
=

1

I logistic
αα −

(
I logistic
βα

)> (
I logistic
ββ

)−1
I logistic
βα

. (20)

We know that I logistic
ββ is positive definite because I logistic(α,β) is finite and positive

definite from Lemma 5, so the principal submatrix I logistic
ββ is positive definite by

Observation 7.1.2 in Horn and Johnson [2012]. Further, since we know from Lemma 5
that the covariance matrix of (α̂, β̂) is finite and positive definite under our conditions,
this also implies that

0 < I logistic
αα −

(
I logistic
βα

)> (
I logistic
ββ

)−1
I logistic
βα <∞. (21)

Now we seek a lower bound for Asym.Var (
√
n · α̂). We see from (20) that we can get

such a bound by lower-bounding
(
I logistic
βα

)> (
I logistic
ββ

)−1
I logistic
βα . Because t 7→ t(1−t)

is upper-bounded by 1/4 for all t ∈ [0, 1],

I logistic
ββ =

∫
xx>π2(x)[1− π2(x)] dF (x) �

∫
xx> · 1

4
dF (x) =

1

4
E
[
XX>

]
.

Then (
I logistic
βα

)> (
I logistic
ββ

)−1
I logistic
βα ≥

(
I logistic
βα

)>(1

4
E
[
XX>

])−1
I logistic
βα

≥ 4λmin

((
E
[
XX>

])−1)∥∥∥I logistic
βα

∥∥∥2
2

=
4
∥∥∥I logistic
βα

∥∥∥2
2∥∥E [XX>]∥∥op

≥
4π2min(1− πmin)2 ‖E [X]‖22

λmax
=: ∆, (22)
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where λmin(·) denotes the minimum eigenvalue of · and the last step follows because∥∥∥I logistic
βα

∥∥∥
2

=

∥∥∥∥∫ xπ2(x)[1− π2(x)] dF (x)

∥∥∥∥
2

≥
∥∥∥∥∫ xπmin(1− πmin) dF (x)

∥∥∥∥
2

= πmin(1− πmin) ‖E [X]‖2

(where we used the fact that X has support only over nonnegative numbers). There-
fore (20) and (22) yield

Asym.Var
(√
n · α̂

)
≥
(

1

Asym.Var (
√
n · α̂q)

−∆

)−1
. (23)

The remainder of the argument is similar to the end of the proof of Theorem 4: the
asymptotic unbiasedness of these estimators yields

Asym.MSE(α̂) = Asym.Var
(√
n · [α− α̂]

)
and

Asym.MSE(α̂q) = Asym.Var
(√
n · [α− α̂q]

)
.

Then from (21) we know that

I logistic
αα >

(
I logistic
βα

)> (
I logistic
ββ

)−1
I logistic
βα ≥

4π2min(1− πmin)2 ‖E [X]‖22
λmax

. (24)

Making the appropriate substitutions into (24) yields

1

Asym.MSE(α̂q)
−∆ > 0,

and then substituting into (23) yields

Asym.MSE(α̂) ≥
(

1

Asym.MSE(α̂q)
−∆

)−1
=

Asym.MSE(α̂q)

1−∆ ·Asym.MSE(α̂q)

(∗)
≥ Asym.MSE(α̂q) · (1 + ∆ ·Asym.MSE(α̂q))

⇐⇒ Asym.MSE(α̂)−Asym.MSE(α̂q)

[Asym.MSE(α̂q)]
2 ≥ ∆,

where in (∗) we used the inequality c/(1− ct) ≤ c(1 + ct) for any c > 0, t < 1
c .
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2. Because (α̂, β̂) 7→ π̂(z) is differentiable for all z ∈ Rp, by the delta method (Theorem
3.1 in van der Vaart 2000)

√
n · [π̂(z)− π(z)]

d−→ N
(

0, π(z)2 [1− π(z)]2
(

1, z>
) (
I logistic(α,β)

)−1 (
1, z>

)>)
for any z ∈ Rp, and similarly

√
n · [π̂q(z)− π(z)]

d−→ N

(
0,
π(z)2 [1− π(z)]2

I logistic
αα

)
.

We can find
(
I logistic(α,β)

)−1 using the formula for block matrix inversion if

D := I logistic
ββ −

I logistic
βα

(
I logistic
βα

)>
I logistic
αα

is positive definite (and therefore invertible; note that D is symmetric) and I logistic
αα >

0. We have

I logistic
αα =

∫
π2(x)[1− π2(x)] dF (x) ≥

∫
πmin[1− πmin] dF (x) = πmin[1− πmin] > 0,

and by Theorem 1.12 in Zhang [2005], we then know D is positive definite (and
invertible) since I logistic(α,β) is by Lemma 5 and I logistic

αα > 0. Let λDmax := ‖D‖op be
the largest eigenvalue of D; note that 1/λDmax is then the smallest eigenvalue of D−1.
Then for any z ∈ Rp, we have(

1 z>
) (
I logistic(α,β)

)−1(1
z

)

=
(
1 z>

) 1

Ilogisticαα
+ 1(

Ilogisticαα

)2

(
I logistic
βα

)>
D−1I logistic

βα − 1

Ilogisticαα

(
I logistic
βα

)>
D−1

− 1

Ilogisticαα
D−1I logistic

βα D−1

(1
z

)

=
1

I logistic
αα

+
1(

I logistic
αα

)2 (I logistic
βα

)>
D−1I logistic

βα + z>D−1z − 2
1

I logistic
αα

I logistic
βα D−1z

(a)
=

1

I logistic
αα

+
1(

I logistic
αα

)2 ∥∥∥D−1/2 (I logistic
βα − I logistic

αα z
)∥∥∥2

2

(b)

≥ 1

I logistic
αα

+
1(

I logistic
αα

)2
λDmax

∥∥∥(I logistic
βα − I logistic

αα z
)∥∥∥2

2
(25)

≥ 1

I logistic
αα

,
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where (a) follows from

1(
I logistic
αα

)2 ∥∥∥D−1/2 (I logistic
βα − I logistic

αα z
)∥∥∥2

2

=
1(

I logistic
αα

)2 ((I logistic
βα

)>
D−1I logistic

βα +
(
I logistic
αα

)2
z>D−1z − 2I logistic

αα I logistic
βα D−1z

)

and (b) uses the fact that 1/
√
λDmax is the smallest eigenvalue of D−1/2. If we can

show that
∥∥∥D−1/2 (I logistic

βα − I logistic
αα z

)∥∥∥
2
6= 0, then (25) is enough to establish the

strict inequality in the result. Using (13), note that

0 = I logistic
βα − I logistic

αα z

=

∫
xπ(x)[1− π(x)] dF (x)− z

∫
π(x)[1− π(x)] dF (x)

⇐⇒ z =

∫
xπ(x)[1− π(x)] dF (x)∫
π(x)[1− π(x)] dF (x)

,

so for all z 6= E [Xπ(X)[1− π(X)]] /E [π(X)[1− π(X)]], we have

1(
I logistic
αα

)2
λDmax

∥∥∥(I logistic
βα − I logistic

αα z
)∥∥∥2

2
> 0.

So for any z ∈ Rp \ E [Xπ(X)[1− π(X)]] /E [π(X)[1− π(X)]], we have

π(z)2 [1− π(z)]2
(
1 z>

)I logistic
αα

(
I logistic
βα

)>
I logistic
βα I logistic

ββ

−1(1
z

)
>

π(z)2 [1− π(z)]2

I logistic
αα

⇐⇒ Asym.Var
(√
n · π̂q(z)

)
< Asym.Var

(√
n · (π̂(z)

)
.

D Remark 3 and Proof of Theorem 2

Before we prove Theorem 2, we begin with a remark investigating the plausibility of the
upper bound (5) required as an assumption for Theorem 2.

Remark 3. To investigate the plausibility of the assumption that Iββ − 2
Iβα1I

>
βα1

Iα1α1
is pos-

itive definite (and that the upper bound for πrare in Equation 5 can hold) empirically, we
performed the following simulation study (with a setup similar to that of our simulation
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studies in Section 4 of the paper). In each of 25 simulations, using n = 106, p = 10, and
K = 3, we generated X ∈ Rn×p with Xij ∼ Uniform(−1, 1) iid for all i ∈ {1, . . . , n} and
j ∈ {1, . . . , p}. We then generated yi ∈ {1, 2, 3} from xi for each i ∈ {1, . . . , n} according
to the proportional odds model (1), using β = (1, . . . , 1)> and α = (0, 20) (so that class
3 would be very rare, with πrare ≈ 4.54 · 10−5). We estimated Iββ , Iβα1 , and Iα1α1 using
empirical estimates of the expressions in (8), (9), and (10); for example, using (19) we
estimated Iββ by

1

n

n∑
i=1

K−1∑
k=1

xix
>
i [πk(xi) + πk+1(xi)] pk(xi)[1− pk(xi)].

Finally, we used these estimated quantities to estimate Iββ−2
Iβα1I

>
βα1

Iα1α1
, and we calculated the

minimum eigenvalue of this estimated matrix. Across all 25 simulations, the sample mean of
this minimum eigenvalue was 0.02361, and the minimum was 0.02359. The standard error
was 2.94·10−6, and the 95% confidence interval for the mean of the minimum eigenvalue was
(0.02360, 0.02362). See Figure 9 for a boxplot of the 100 estimated minimum eigenvalues.

These results seem to suggest that the assumption that λmin

(
Iββ − 2

Iβα1I
>
βα1

Iα1α1

)
> 0 is

reasonable under the assumptions of Theorem 2.

0.02360

0.02362

0.02364

Minimum Eigenvalue

la
m

bd
a_

m
in

Figure 9: Boxplot of the estimated minimum eigenvalues of Iββ−2
Iβα1

I>βα1
Iα1α1

in the simulation study described
in Remark 3.
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Further, we also empirically investigated the plausibility of the assumption

πrare ≤
λmin

(
Iββ − 2

Iβα1I
>
βα1

Iα1α1

)
3M2 (2 +M)

(26)

directly. Note that in this simulation study, M = ‖(1, . . . , 1)‖2 =
√
p, S = [−1, 1]p and

sup
x∈S
{π3(x)} = π3(x

∗) = 1− 1

1 + exp{−(20 +
∑p

j=1 x
∗
j )}

,

for x∗ = (−1, . . . ,−1). So all of the quantities in (26) are known except the minimum
eigenvalue, which we were able to estimate with seemingly high precision. It turns out that
(26) was satisfied even when we used the minimum value of λmin across all 25 simulations as
our estimate; in this case, the left side of (26) is 4.54 · 10−5 and the right side is 1.52 · 10−4.

Lastly, for Theorem 2 to make sense it should also hold that λmin

(
Iββ − 2

Iβα1I
>
βα1

Iα1α1

)
does not vanish as πrare becomes arbitrarily small; we investigate this analytically. To see
that this seems reasonable, note that from (19) we have

Iββ =
2∑

k=1

∫
xx> [πk(x) + πk+1(x)] pk(x)[1− pk(x)] dF (x)

=

∫
xx> ([π1(x) + π2(x)]π1(x)[1− π1(x)] + [π2(x) + π3(x)]π3(x)[1− π3(x)]) dF (x)

=

∫
xx> ([1− π3(x)]π1(x)[1− π1(x)] + [1− π1(x)]π3(x)[1− π3(x)]) dF (x)

=

∫
xx>[1− π1(x)][1− π3(x)] (π1(x) + π3(x)) dF (x)

=

∫
xx>[π2(x) + π3(x)][1− π3(x)][π1(x) + π3(x)] dF (x),

which is non-vanishing in πrare. (In particular, there seems to be no reason to suspect that
the eigenvalues of Iββ change drastically for, say π3(x) ≤ 4.54 ·10−5 for all x ∈ S, as in our
simulation study above, versus π3(x) ≤ 10−20 for all x ∈ S.) Further, (32) below shows
that ∥∥∥∥∥Iβα1I

>
βα1

Iα1α1

∥∥∥∥∥
op

=
‖Iβα1‖22
Iα1α1

(where ‖·‖op is the operator norm) is bounded from above by a constant not depending on
πrare. Taken together, this suggests that Assumption (26) does not become more implausible
as πrare becomes arbitrarily small.
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Before we proceed with the proof of Theorem 2, we state a lemma with inequalities we
will use.

Lemma 6. The following inequalities hold under the assumptions of Theorem 2:

Iα2α2 ≤ πrareIα1α1 ·
1

1/4−∆2
, (27)

Iα2α2 ≤ πrare

(
1 +

πrare

1/2−∆

)
, (28)

|Iα1α2 | ≤ Iα2α2 , (29)
‖Iβα2‖2 ≤ M · Iα2α2 , (30)

‖Iβα2‖
2
2

Iα2α2

≤ M2πrare

(
1 +

πrare

1/2−∆

)
, and (31)

‖Iβα1‖22
Iα1α1

≤ M2

4
. (32)

Proof. Provided immediately after the proof of Theorem 2.

Proof of Theorem 2. By an argument analogous to the one used at the end of the proof of
Theorem 4, it is enough to upper-bound∥∥∥Cov

(
lim
n→∞

√
n
[
β − β̂prop. odds])∥∥∥

op
=
∥∥∥Asym.Cov

(√
n · β̂prop. odds)∥∥∥

op
.

Using Lemma 5 and the block matrix inversion formula,

Asym.Cov
(√

n · β̂prop. odds)
=
(
Iββ − I>αβI−1ααIαβ

)−1
=⇒

∥∥∥Asym.Cov
(√

n · β̂prop. odds)∥∥∥
op

=
1

λmin

(
Iββ − I>αβI

−1
ααIαβ

) ,
where λmin(·) is the minimum eigenvalue of · and ‖·‖op is the operator norm. Iαα is a 2× 2
matrix, so

I−1αα =
1

det (Iαα)

(
Iα2α2 −Iα1α2

−Iα2α1 Iα1α1

)
,

and

I>αβI
−1
ααIαβ =

1

det (Iαα)

(
Iβα1 Iβα2

)( Iα2α2 −Iα1α2

−Iα2α1 Iα1α1

)(
Iα1β

Iα2β

)
=

1

det (Iαα)

(
Iα2α2Iβα1I

>
βα1

+ Iα1α1Iβα2I
>
βα2
− Iα1α2Iβα1I

>
βα2
− Iα1α2Iβα2I

>
βα1

)
=

1

det (Iαα)

(
Iα2α2Iβα1I

>
βα1

+ Iα1α1Iβα2I
>
βα2

+ |Iα1α2 |Iβα1I
>
βα2

+ |Iα1α2 |Iβα2I
>
βα1

)
,

(33)
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where in the last step we used that Iα1α2 = −M̃2 < 0, which is clear from (9) and (12).
Because we know from Lemma 5 that Iαα (and therefore also I−1αα ) is positive definite,
by Observation 7.1.6 in Horn and Johnson [2012] I>αβI

−1
ααIαβ is positive definite as well.

Therefore we can use an upper bound on 1/ det (Iαα) to upper bound I>αβI
−1
ααIαβ . We have

det (Iαα) = Iα1α1Iα2α2 − I2α1α2

(a)

≥ Iα1α1Iα2α2 − I2α2α2

= Iα2α2 (Iα1α1 − Iα2α2)

(b)

≥ Iα2α2

(
Iα1α1 − πrareIα1α1 ·

1

1/4−∆2

)
=

(
1− πrare

1/4−∆2

)
Iα1α1Iα2α2

(c)

≥ 1

2
Iα1α1Iα2α2 ,

where in (a) we used (29), in (b) we used (27), and (c) uses that from the upper bound (5)
for πrare we have

πrare ≤
1

2

(
1

2
−∆

)(
1

2
+ ∆

)
=

1

2

(
1

4
−∆2

)
⇐⇒ πrare

1/4−∆2
≤ 1

2

⇐⇒ 1− πrare

1/4−∆2
≥ 1

2
.

Now we can bound I>αβI
−1
ααIαβ using (33):

I>αβI
−1
ααIαβ �

2

Iα1α1Iα2α2

(
Iα2α2Iβα1I

>
βα1

+ Iα1α1Iβα2I
>
βα2

+ |Iα1α2 |Iβα1I
>
βα2

+ |Iα1α2 |Iβα2I
>
βα1

)
= 2

(
Iβα1I

>
βα1

Iα1α1

+
Iβα2I

>
βα2

Iα2α2

+
|Iα1α2 |

Iα1α1Iα2α2

(
Iβα1I

>
βα2

+ Iβα2I
>
βα1

))
,

and

Iββ − I>αβI−1ααIαβ � Iββ − 2
Iβα1I

>
βα1

Iα1α1

− 2

(
Iβα2I

>
βα2

Iα2α2

+
|Iα1α2 |

Iα1α1Iα2α2

(
Iβα1I

>
βα2

+ Iβα2I
>
βα1

))

Note that Iββ , Iβα1I
>
βα1

, Iβα2I
>
βα2

, and Iβα1I
>
βα2

+ Iβα2I
>
βα1

are all symmetric. By Weyl’s
theorem, it holds that for symmetric matrices with matching dimensions A and B,

λmin(A−B) ≥ λmin(A)− ‖B‖op,
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because for any v

(A−B)v = Av −Bv ≥ λmin(A)v − ‖B‖opv = (λmin(A)− ‖B‖op)v.

So

λmin

(
Iββ − I>αβI−1ααIαβ

)
≥ λmin

(
Iββ − 2

Iβα1I
>
βα1

Iα1α1

)
− 2

Iα2α2

∥∥∥Iβα2I
>
βα2

∥∥∥
op
− 2

|Iα1α2 |
Iα1α1Iα2α2

∥∥∥Iβα1I
>
βα2

+ Iβα2I
>
βα1

∥∥∥
op

(a)

≥ λmin

(
Iββ − 2

Iβα1I
>
βα1

Iα1α1

)
− 2

Iα2α2

∥∥∥Iβα2I
>
βα2

∥∥∥
op
− 2

|Iα1α2 |
Iα1α1Iα2α2

(∥∥∥Iβα1I
>
βα2

∥∥∥
op

+
∥∥∥Iβα2I

>
βα1

∥∥∥
op

)
(b)

≥ λmin

(
Iββ − 2

Iβα1I
>
βα1

Iα1α1

)
− 2
‖Iβα2‖22
Iα2α2

− 2
|Iα1α2 |

Iα1α1Iα2α2

(
2 ‖Iβα1‖2 ‖Iβα2‖2

)
(c)

≥ λmin

(
Iββ − 2

Iβα1I
>
βα1

Iα1α1

)
− 2M2πrare

(
1 +

πrare

1/2−∆

)
− 2

Iα2α2

Iα1α1Iα2α2

(
2 ‖Iβα1‖2 ·M · Iα2α2

)
= λmin

(
Iββ − 2

Iβα1I
>
βα1

Iα1α1

)
− 2M

(
Mπrare

(
1 +

πrare

1/2−∆

)
+ 2

Iα2α2

Iα1α1

‖Iβα1‖2

)
(d)

≥ λmin

(
Iββ − 2

Iβα1I
>
βα1

Iα1α1

)
− 2M

(
Mπrare

(
1 +

πrare

1/2−∆

)
+ 2

1

Iα1α1

‖Iβα1‖2 · πrare

(
1 +

πrare

1/2−∆

))

= λmin

(
Iββ − 2

Iβα1I
>
βα1

Iα1α1

)
− 2Mπrare

(
1 +

πrare

1/2−∆

)(
M + 2

‖Iβα1‖2
Iα1α1

)
(e)

≥ λmin

(
Iββ − 2

Iβα1I
>
βα1

Iα1α1

)
− 2Mπrare

(
1 +

1

2

)(
M +

M2

2

)
(f)

≥ 1

2
λmin

(
Iββ − 2

Iβα1I
>
βα1

Iα1α1

)
,

where in (a) we used the triangle inequality, in (b) we used that for any a, b ∈ Rn it holds
that ‖ab>‖op = |b>a| ≤ ‖a‖2‖b‖2 (note that ab> is rank one with eigenvector a) as well
as the triangle inequality, in (c) we used (29), (30), and (31), in (d) we used (28), (e) follows
from (32) and

πrare

1/2−∆
≤ 1/2(1/2−∆)(1/2 + ∆)

1/2−∆
=

1

2

(
1

2
+ ∆

)
≤ 1

2

(
1

2
+

1

2

)
≤ 1

2

(since ∆ ≤ 1/2), and in (f) we used our assumptions that

λmin

(
Iββ − 2

Iβα1I
>
βα1

Iα1α1

)
> 0
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and

πrare ≤
λmin

(
Iββ − 2

Iβα1I
>
βα1

Iα1α1

)
3M2 (2 +M)

⇐⇒ 3Mπrare

(
M +

M2

2

)
≤ 1

2
λmin

(
Iββ − 2

Iβα1I
>
βα1

Iα1α1

)
.

We have therefore shown that∥∥∥Cov
(

lim
n→∞

√
n
[
β − β̂prop. odds])∥∥∥

op
≤ 2

λmin

(
Iββ − 2

Iβα1I
>
βα1

Iα1α1

) .

Proof of Lemma 6. We omit x in integrals, when it is clear (e.g., π1 stands for π1(x)).
Proof of (27):

From (9) and (11), using π1(x) + π2(x) + π3(x) = 1 we have

Iα2α2 = M2

=

∫
[π3(x)(1− π3(x))]2

(
1

π2(x)
+

1

π3(x)

)
dF (x)

=

∫
[π3(x)(1− π3(x))]2

(
π2(x) + π3(x)

π2(x)π3(x)

)
dF (x)

=

∫
π3(x)[1− π3(x)]2

(
1− π1(x)

π2(x)

)
dF (x) (34)

≤ πrare

∫
(1− π3)2(1− π1)/π2dF

= πrare

∫
π1(1− π1)2

(1− π3)2

π2

[
1

π1(1− π1)

]
dF

(a)

≤ πrare

∫
π1(1− π1)2

1− π3
π2

[
1

(1/2−∆)(1/2 + ∆)

]
dF

= πrare

∫
π21(1− π1)2

π1 + π2
π1π2

1

1/4−∆2

= πrare

∫
π21(1− π1)2

(
1

π1
+

1

π2

)
1

1/4−∆2

= πrareM1
1

1/4−∆2

= πrareIα1α1

1

1/4−∆2
,
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where in (a) we used the fact that t 7→ 1/[t(1− t)] is nonincreasing in t for t ∈ (0, 1/2], so
it is largest when t is small as possible, and by assumption infx∈S{π1 ∧ 1− π1} ≥ 1/2−∆.
Proof of (28): Using (34) we have

Iα2α2 =

∫
π3(x)[1− π3(x)]2

(
π2(x) + π3(x)

π2(x)

)
dF (x)

=

∫
π3(1− π3)2(1 + π3/π2)dF

≤ πrare

∫
(1− 0)2

(
1 +

πrare

1/2−∆

)
dF.

Proof of (29): Using (34) along with (8) and (12) we have

Iα2α2 =

∫
π3(x)[1− π3(x)]2

(
1− π1(x)

π2(x)

)
dF (x)

=

∫
π3(x)[1− π3(x)][1− π1(x)]

(
π1(x) + π2(x)

π2(x)

)
dF (x)

=

∫
π3(1− π3)(1− π1)

π1
π2
dF +

∫
π3(1− π3)(1− π1)dF

= M̃2 +

∫
π3(1− π3)(1− π1)dF

= |Iα1α2 |+
∫
π3(1− π3)(1− π1)dF

≥ |Iα1α2 |.

Proof of (30): From (9) and (18) we have
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‖Iβα2‖2 =

∥∥∥∥∫ x [π2(x) + π3(x)]π3(x)[1− π3(x)] dF (x)

∥∥∥∥
2

=

∥∥∥∥∫ x [1− π1(x)]π3(x)[1− π3(x)] dF (x)

∥∥∥∥
2

≤
∫
‖x‖2π3(x)[1− π3(x)][1− π1(x)]dF

≤M
∫
π3(x)[1− π3(x)][1− π1(x)]dF

≤M ·
∫
π3(x)[1− π3(x)][1− π1(x)]

(
1 +

π3(x)

π2(x)

)
dF (x)

= M ·
∫
π3(x)[1− π3(x)][1− π1(x)]

(
π2(x) + π3(x)

π2(x)

)
dF (x)

= M ·
∫
π3(x)[1− π3(x)][1− π1(x)]

(
1− π1(x)

π2(x)

)
dF (x)

≤M ·
∫
π3(x)[1− π3(x)]2

(
1− π1(x)

π2(x)

)
dF (x)

= M · Iα2α2 ,

where in the last inequality we used π3(x) ≤ πrare < 1/2−∆ ≤ π1(x) for all x ∈ S and in
the last step we used (34).
Proof of (31): This follows from (28) and (30).
Proof of (32): Using from (9)

‖Iβα1‖2 =

∥∥∥∥∫ xπ21(x)[1− π1(x)] dF (x) +

∫
xπ2(x)π1(x)[1− π1(x)] dF (x)

∥∥∥∥
2

=

∥∥∥∥∫ x[π1(x) + π2(x)]π1(x)[1− π1(x)] dF (x)

∥∥∥∥
2

≤
∫
‖x‖2 [π1(x) + π2(x)]π1(x)[1− π1(x)] dF (x)

≤ M

∫
[π1(x) + π2(x)]π1(x)[1− π1(x)] dF (x)

45



and from (8)

Iα1α1 = M1 =

∫
(π1(x)[1− π1(x)])2

(
1

π1(x)
+

1

π2(x)

)
dF (x)

=

∫
(π1(x)[1− π1(x)])2

π1(x) + π2(x)

π1(x)π2(x)
dF (x)

=

∫
π1(x)[1− π1(x)][π1(x) + π2(x)]

1− π1(x)

π2(x)
dF (x)

≥
∫
π1(x)[1− π1(x)][π1(x) + π2(x)] dF (x),

we have
‖Iβα1‖22
Iα1α1

≤M2

∫
[π1(x) + π2(x)]π1(x)[1− π1(x)] dF (x) ≤ M2

4
,

where in the last step we used that t 7→ t(1− t) ≤ 1/4 for all t ∈ [0, 1].

E Proof of Lemma 5

First we will calculate the Fisher information matrices, then we will show the convergence
results.

Since the logistic regression model can be considered a special case of the proportional
odds model withK = 2 categories, we will mostly focus our calculations on the proportional
odds model.

E.1 Calculating the Log Likelihood and Gradients

In the proportional odds model, the likelihood can be expressed as

n∏
i=1

K∏
k=1

(
1

1 + exp
{
−(αk + β>xi)

} − 1

1 + exp
{
−(αk−1 + β>xi)

})1{yi=k}

, (35)

so the log likelihood can be expressed as

Lprop. odds(α,β) =
n∑
i=1

K∑
k=1

1{yi = k} log

(
1

1 + exp
{
−(αk + β>xi)

} − 1

1 + exp
{
−(αk−1 + β>xi)

})

=

n∑
i=1

K∑
k=1

1{yi = k} log (pik − pi,k−1)

=

n∑
i=1

K∑
k=1

1{yi = k} log (πik) ,
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where

pik := pk (xi) ,

πik := P(yi = k) = pik − pi,k−1 = pk (xi)− pk−1 (xi) ,

α0 := −∞ and αK := ∞ (while α := (α1, . . . , αK−1)
> are parameters to be estimated).

Using
∂

∂t

1

1 + exp{−t}
=

1

1 + exp{−t}

(
1− 1

1 + exp{−t}

)
the gradient has entries corresponding to β equal to

∇βLprop. odds(α,β) =
n∑
i=1

K∑
k=1

1{yi = k}xi
(
pik(1− pik)− pi,k−1(1− pi,k−1)

pik − pi,k−1

)

=

n∑
i=1

K∑
k=1

1{yi = k}xi

pik − pi,k−1 −
(
p2ik − p2i,k−1

)
pik − pi,k−1


=

n∑
i=1

K∑
k=1

1{yi = k}xi (1− pik − pi,k−1) ,

and using

∂

∂αk
πik =

∂

∂αk
(pik − pi,k−1) = pik(1− pik) and

∂

∂αk
πi,k+1 =

∂

∂αk
(pi,k+1 − pik) = −pik(1− pik),

the entries corresponding to α equal

∂

∂αk
Lprop. odds(α,β) =

n∑
i=1

∂

∂αk
(1{yi = k} log (πik) + 1{yi = k + 1} log (πi,k+1))

=
n∑
i=1

(
1{yi = k}pik(1− pik)

πik
− 1{yi = k + 1}pik(1− pik)

πi,k+1

)

=⇒ ∇αLprop. odds(α,β) =

n∑
i=1

ekpik(1− pik)
(
1{yi = k}

πik
− 1{yi = k + 1}

πi,k+1

)
,

where ek ∈ {0, 1}K−1 has the kth entry equal to 1 and the rest equal to 0. (Note that since
α0 = −∞, pi0 = 0, and similarly piK = 1 as expected.)
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E.2 Calculating the Hessian Matrices

The entries of the Hessian corresponding to β, Hprop. odds
ββ are

∇2
βLprop. odds(α,β) = −

n∑
i=1

K∑
k=1

1{yi = k}xix>i [pik(1− pik) + pi,k−1 (1− pi,k−1)]

= −
n∑
i=1

xix
>
i

K∑
k=1

(1{yi = k + 1}+ 1{yi = k}) Var (1{yi ≤ k}) .

Using

∂

∂αk
pik(1− pik) = pik(1− pik)− 2p2ik(1− pik) = pik(1− pik) (1− 2pik) ,

the entries corresponding to the α block of the Hessian Hprop. odds
αα are as follows:

∂2

∂α2
k

Lprop. odds(α,β) =

n∑
i=1

∂

∂αk

(
pik(1− pik)

(
1{yi = k}

πik
− 1{yi = k + 1}

πi,k+1

))

=

n∑
i=1

(
1{yi = k}

πikpik(1− pik) (1− 2pik)− p2ik(1− pik)2

π2ik

− 1{yi = k + 1}
πi,k+1pik(1− pik) (1− 2pik) + p2ik(1− pik)2

π2i,k+1

)
=

n∑
i=1

pik(1− pik)
(
1{yi = k}πik (1− 2pik)− pik(1− pik)

π2ik

− 1{yi = k + 1}
πi,k+1 (1− 2pik) + pik(1− pik)

π2i,k+1

)
,

∂2

∂αk∂αk−1
Lprop. odds(α,β) =

n∑
i=1

pik(1− pik)
∂

∂αk−1

(
1{yi = k}

πik
− 1{yi = k + 1}

πi,k+1

)

= −
n∑
i=1

1{yi = k}pik(1− pik)
(
−pi,k−1(1− pi,k−1)

π2ik

)

=
n∑
i=1

1{yi = k} ·
pik(1− pik)pi,k−1(1− pi,k−1)

π2ik
, and

∂2

∂αk∂αk′
Lprop. odds(α,β) = 0, all other k 6= k′,

where πi,K+1 = 0. (Note that ∂2

∂αk∂αk+1
Lprop. odds(α,β) is nonzero as well, but it matches

the expression for ∂2

∂αk̃∂αk̃−1
Lprop. odds(α,β) with k̃ := k + 1.)
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Finally, the entries corresponding to the α and β mixed blocksHprop. odds
αβ of the Hessian

are

∂

∂αk
∇βLprop. odds(α,β) =

n∑
i=1

(
1{yi = k}xi

∂

∂αk
(1− pik − pi,k−1)

+ 1{yi = k + 1}xi
∂

∂αk
(1− pi,k+1 − pi,k)

)
= −

n∑
i=1

xipik (1− pik) (1{yi = k}+ 1{yi = k + 1}) , k ∈ [K − 1].

E.3 Calculation of the Fisher Information Matrices

Now we find the Fisher information matrices

Iprop. odds(α,β) =

 Iprop. odds
αα Iprop. odds

βα(
Iprop. odds
βα

)>
Iprop. odds
ββ


and

I logistic(α,β) =

I logistic
αα

(
I logistic
βα

)>
I logistic
βα I logistic

ββ


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by taking the negative expectation of each block (using a single observation). For the α
block, we have

−E
[
∂2

∂α2
k

Lprop. odds(α,β)

]
= − E

[
pik(1− pik)

(
1{yi = k}πik (1− 2pik)− pik(1− pik)

π2ik

− 1{yi = k + 1}
πi,k+1 (1− 2pik) + pik(1− pik)

π2i,k+1

)]
= − E

[
pik(1− pik)

(
πik (1− 2pik)− pik(1− pik)

πik

−
πi,k+1 (1− 2pik) + pik(1− pik)

πi,k+1

)]
= E

[
p2ik(1− pik)2

(
1

πik
+

1

πi,k+1

)]
= Mk, k ∈ [K − 1],

−E
[

∂2

∂αk∂αk−1
Lprop. odds(α,β)

]
= − E

[
1{yi = k} ·

pik(1− pik)pi,k−1(1− pi,k−1)
π2ik

]
= − E

[
pik(1− pik)pi,k−1(1− pi,k−1)

πik

]
= − M̃k, k ∈ {2, . . . ,K − 1}, and

E
[

∂2

∂αk∂αk′
Lprop. odds(α,β)

]
= 0, all other k 6= k′,

where we used the definitions of Mk and M̃k in (11) and (12). Therefore Iprop. odds
αα (α,β) ∈

R(K−1)×(K−1) has the form

Iprop. odds
αα (α,β) =



M1 −M̃2 0 · · · 0 0

−M̃2 M2 −M̃3 · · · 0 0

0 −M̃3 M3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · MK−2 −M̃K−1
0 0 0 · · · −M̃K−1 MK−1


,
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verifying (8). Observe that in the case of logistic regression (K = 2), we have

I logistic
αα (α1,β) = M1 =

∫
[p1(x)(1− p1(x))]2

(
1

π1(x)
+

1

π2(x)

)
dF (x)

=

∫
[π1(x)(1− π1(x))]2

(
1

π1(x)
+

1

1− π1(x)

)
dF (x)

=

∫
[π1(x)(1− π1(x))]2 · 1

π1(x) (1− π1(x))
dF (x)

=

∫
π1(x)(1− π1(x)) dF (x)

= M logistic
1 ,

which is (14). (This is equivalent to a logistic regression predicting whether yi = 1 regardless
of K.)

E.4 Mixed block

For the α-β mixed block, we have for all k ∈ {1, . . . ,K − 1}

−E
[

∂2

∂αk∂β
Lprop. odds(α,β)

]
= E [X1pk(X1)(1− pk(X1))(πk (X1) + πk+1 (X1))] .

Then

−E
[

∂2

∂αk∂β
Lprop. odds(α,β)

]
= Jxk + J̃xk+1, k ∈ {1, . . . ,K − 1},

so Iprop. odds
βα (α,β) ∈ R(K−1)×p has the form

Iprop. odds
βα (α,β) =


Jx1 + J̃x2
Jx2 + J̃x3

...
JxK−1 + J̃xK

 ,

as in (9). In the case of logistic regression predicting whether yi = 1,

I logistic
βα (α1,β) = Jx; logistic

1 + J̃x; logistic
2 =

∫
xπ1(x)[1− π1(x)] dF (x),

verifying (15).
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E.5 Beta block

Finally, for the β block, we have

Iprop. odds
ββ (α,β) = −E

[
∇2
βLprop. odds(α,β)

]
= E

[
E

[
X1X

>
1

K∑
k=1

(1{yi = k + 1}+ 1{yi = k}) pk(X1)(1− pk(X1)) |X

]]

= E

[
X1X

>
1

K∑
k=1

(πk+1 (X1·) + πk (X1·)) pk(X1)(1− pk(X1))

]

=
K∑
k=1

(
Jxx

>
k + J̃xx

>
k

)
,

as in (10) (recall that Jxx>K = 0 and J̃xx>1 = 0 for all x). In the case of logistic regression
predicting whether yi = 1 (for any K),

I logistic
ββ (α1,β) = Jxx

>; logistic
1 + J̃xx

>; logistic
2 =

∫
xx>π1(x)[1− π1(x)] dF (x),

matching (16).

E.6 Verifying the Asymptotic Distribution of Each Estimator

By the theorem on p. 145 of Serfling [1980, Section 4.2.2, multidimensional generalization
on p. 148], the result holds if we can verify three regularity conditions. Before we do, we
will define the set Θ of feasible parameters (α,β). Since

α1 < α2 < . . . < αK−1,

where the strict inequality follows from our assumption that no class has probability 0 for
any x ∈ [−1, 1], define the set A ⊂ RK−1 of points satisfying this constraint. Then define
Θ := A× Rp, so that (α,β) ∈ Θ.

Now we state and verify the needed regularity conditions.

1. (R1) The third derivatives of the log likelihood with respect to each parameter (α,β)
exist for all x ∈ S. This condition holds for both the proportional odds model and
logistic regression because every entry of the Hessian matrices in Section (E.2) are
differentiable in every parameter for any K ≥ 1.

2. (R2) For each (α0,β0) ∈ Θ, for all (α,β) in a neighborhood of (α0,β0) it holds that
(i) the element-wise absolute values of the gradients and Hessians of the likelihood are
bounded by functions of x with finite integral over x ∈ S, and (ii) the element-wise
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absolute values of the third derivatives of the log likelihood is bounded by a function of
x with finite expectation with respect toX. BecauseX has bounded support, for these
integrals and expectations to be finite it is enough for the bounding functions to over
S to be finite constants—that is, it is enough to find upper bounds on the absolute
values of the gradients and Hessians of the likelihoods and the third derivatives of the
log likelihoods. The logistic regression likelihood

n∏
i=1

exp
{
−1 {yi = 1} (α1 + β>xi)

}
1 + exp{−(α1 + β>xi)}

has continuous second derivatives and therefore its gradient and Hessian both have
finite element-wise absolute value. The same is true of the proportional odds likelihood
(35) when all outcomes have positive probability for all x ∈ S, that is, α1 < . . . <
αK−1. Finally, examining again the Hessian matrices in Section E.2, we see that they
have continuous derivatives in every parameter for any K ≥ 2, so the third derivatives
of the log likelihoods are bounded for any (α0,β0) ∈ Θ for all x ∈ S.

3. (R3) The Fisher information matrices exist and are finite and positive definite. One
can see that both of the Fisher information matrices are finite entrywise for all
(α,β) ∈ Θ by examining the matrices and noting that the probabilities for all of
the classes are strictly greater than 0 over S by assumption. To verify the positive
definiteness of the Fisher information matrices

−E
[

∂2

∂θθ>
L(θ)

]
,

it is enough to show that the log likelihood for each model is strictly concave, which
implies that ∂2

∂θθ>
L(θ) is almost surely negative definite (since the log likelihood is

twice differentiable). Strict concavity of the logistic regression log likelihood

n∑
i=1

[
−1 {yi = 1} (α1 + β>xi)− log

(
1 + e−(α1+β

>xi)
)]

is easily seen, and Pratt [1981] provides a proof that the log likelihood for the pro-
portional odds model is strictly concave when the intercepts α1, . . . , αK−1 are not
equal.

F Proof of Theorem 3

We prove Theorem 3 in Section F.1, and Section F.2 contains proofs of the supporting
lemmas.
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F.1 Proof of Theorem 3

The proof will proceed as follows. First we will show that PRESTO is a member of a class
of models described by Ekvall and Bottai [2022], which means we can bound the estimation
error of the parameters of PRESTO in a finite sample under their Theorem 3 once we show
that its assumptions are satisfied. Their result depends on the probability of a particular
event Cκ,n,pn(K−1), and in Proposition 7 we prove a lower bound on P

(
Cκ,n,pn(K−1)

)
that

tends towards 1 as n→∞. This leads to the consistency of PRESTO.
In the notation of Ekvall and Bottai [2022], we can express the objective function for the

PRESTO estimator from (7) as R{b(yi,xi,θ)} − R{a(yi,xi,θ)} + λn‖θ‖1, where R(·) =
F (·), the logistic cumulative distribution function; (a(yi,xi,θ); b(yi,xi,θ))> = Z>i θ +mi

where

Zi :=


1{yi ≥ 2}xi 1{yi ≤ K − 1}xi
1{yi ≥ 3}xi 1{2 ≤ yi ≤ K − 1}xi

...
...

1{yi = K}xi 1{yi = K − 1}xi

 ∈ Rpn(K−1)×2,

θ :=


β1

ψ2
...

ψK−1

 ∈ Rpn(K−1), and

mi :=


{
−∞, yi = 1,

αk−1, yi = k (k ≥ 2){
αk, yi = k (k < K − 1)

∞, yi = K

 ∈ R2
,

where R := R ∪ {−∞,∞} denotes the extended real number system; and, as elsewhere in
the paper, ψk = βk − βk−1 for k ∈ {2, . . . ,K − 1}. Observe that this is a special case of
model (1) of Ekvall and Bottai [2022]. Now, since Θ = Rpn(K−1) is open and the standard
logistic density r(t) = exp{−t}/ (1 + exp{−t})2 is strictly log-concave, strictly positive, and
continuously differentiable on R, assumptions (a) and (b) of Theorem 3 in Ekvall and Bottai
[2022] are satisfied, assumption S(C4) is sufficient for assumption (c), and assumption (e)
is satisfied for C3 = c2.

We now discuss Assumption 1 from Ekvall and Bottai [2022]. Note that a decision
boundary crosses at some x ∈ S if and only if for some k ∈ {2, . . . ,K − 1} it holds that

F
(
αk + β>k x

)
− F

(
αk−1 + β>k−1x

)
≤ 0

⇐⇒ b(k,x,θ)− a(k,x,θ) ≤ 0.

Observe that for k = 1 it holds that mi1 = −∞ and for k = K it holds that mi2 = ∞;
that is, an element of mi is infinite. So Assumption T (C4) is sufficient for it to either hold
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that Z>i θ + mi ∈ E where E ⊆ {t ∈ R2 : t1 < t2} or an element of mi is infinite. To
satisfy Assumption 1, it only remains to show that there exists such an E that is compact.
Note that ‖θ∗‖∞ is bounded under Assumption S(s, C4) and ‖θ∗‖0 ≤ s under our sparsity
assumption, so ‖θ∗‖1 is bounded due to Hölder’s inequality. Lastlymi is bounded because
maxk∈{1,...,K−1} |αk| ≤ C4 under Assumption T (C4), so we have shown that we can find
such an E that is bounded. Choose one that is closed and we have E compact.

We have shown that the assumptions of Theorem 3 of Ekvall and Bottai [2022] are
satisfied, so we have that for n large enough that pn ≥ K − 1, with probability at least
P
(
Cκ,n,pn(K−1)

)
− [pn(K − 1)]−c3 ≥ P

(
Cκ,n,pn(K−1)

)
− (p2n)−c3

∥∥∥θ̂λn − θ∗∥∥∥
1
≤ c5

√
log(pn(K − 1))

n
≤ c5

√
log(p2n)

n
= c5
√

2

√
log pn
n

, (36)

where c3 and c5 are constants from Ekvall and Bottai [2022], and Cκ,n,pn(K−1) is defined as
follows. For a set A ⊆ {1, . . . , pn(K − 1)}, define θA ∈ Rpn(K−1) to have jth entry

(θA)j :=

{
θj , j ∈ A,
0, j /∈ A,

and define θAc := θ − θA. Then for an s-sparse (in the sense of Assumption S(s, c)) θ∗
with support set S, define

C(S) :=
{
θ ∈ Rpn(K−1) : ‖θSc‖1 ≤ 3 ‖θS‖1

}
.

We interpret C(S) to be a set of approximately s-sparse vectors (the vectors would be
exactly s-sparse if ‖θSc‖1 = 0). Then for κ > 0 and n ∈ N, define

Cκ,n,pn(K−1) :=

{
(X,y) : inf

{θ∈C(S):‖θ‖2=1}

{
θ>

(
1

n

n∑
i=1

ZiZ
>
i

)
θ

}
≥ κ

}
.

If the set of θ over which this condition must hold were Rpn(K−1), this would be a minimum
eigenvalue condition on 1

n

∑n
i=1ZiZ

>
i . This condition is sometimes called a restricted

eigenvalue condition [Bickel et al., 2009]. We bound P
(
Cκ,n,pn(K−1)

)
in Proposition 7.

Proposition 7. Suppose the assumptions of Theorem 3 hold. Let

πrare,min := inf
x∈S,k∈{1,...,K}

{P(yi = k | x)} ,

and observe that πrare,min > 0 under Assumptions X(Rpn), S(s, C4), and T (C4). Assume
n is large enough so that

nπrare, min > max

{
2

(
C
√
pn +

√
a

λ∗min

)2

, 2

}
(37)
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for some a > 0 (recall from the statement of Theorem 3 that we assumed λ∗min := mink∈{1,...,K} λmin
(
E
[
xix

>
i | yi = k

])
>

b for a fixed b > 0). Then

P
(
Caπrare,min/4,n,pn(K−1)

)
≥ 1−2K exp

{
−1

2
π2rare,minn

}
−2K exp

{
−c
(√

nπrare,min

2
− C√pn −

√
a

λ∗min

)2
}
.

Proof. Provided in Section F.2.

Observe that since pn ≤ C1n
C2 for some C1 > 0, C2 ∈ (0, 1) this probability tends to 1

as n→∞. Lemma 8, below, along with (36) then shows that with probability at least

1− p−C5
n − 2K exp

{
−1

2
π2rare,minn

}
− 2K exp

{
−c
(√

nπrare,min

2
− C√pn −

√
a

λ∗min

)2
}

it holds that ∥∥∥β̂λn − β∥∥∥
2
≤
∥∥∥β̂λn − β∥∥∥

1
≤ C6

√
log pn
n

,

where C5 := 2c3 and C6 := c5
√

2(K − 1) (where c5 depends on the sparsity level s).

Lemma 8.
∥∥∥β̂λn − β∥∥∥

2
≤
∥∥∥β̂λn − β∥∥∥

1
≤ (K − 1)

∥∥∥θ̂λn − θ∗∥∥∥
1
.

Proof. Provided in Section F.2.

Finally, we can now show consistency by showing that the random variable
∥∥∥β̂λn − β∥∥∥

2
converges in probability to 0. For any ε > 0,

lim
n→∞

P
(∥∥∥β̂λn − β∥∥∥

2
< ε
)

(∗)
≥ lim

n→∞
P

(∥∥∥β̂λn − β∥∥∥
2
< C6

√
log pn
n

)

≥ lim
n→∞

(
1− p−C5

n − 2K exp

{
−1

2
π2rare,minn

}
− 2K exp

{
−c
(√

nπrare,min

2
− C√pn −

√
a

λ∗min

)2
})

= 1,

where (∗) follows because for large enough n, ε > C6

√
log(pn)/n. This establishes Theorem

3. All that remains is to provide proofs for the supporting lemmas and proposition, which
we do in the following section.
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F.2 Supporting Results for Proof of Theorem 3

Proof of Proposition 7. We will show that there is a high probability event such that for
a > 0 it holds that

inf
{θ∈C(S):‖θ‖2=1}

{
θ>

(
1

n

n∑
i=1

ZiZ
>
i

)
θ

}
>

1

2
aπrare,min.

Let
A(1) =

(
0K−1 e1

)
∈ R(K−1)×2

A(k) =

 1k−1 1k−1
0 1

0K−k−1 0K−k−1

 =
(∑k−1

k′=1 ek′
∑k

k′=1 ek′
)
∈ R(K−1)×2, k ∈ {2, . . . ,K − 1};

and
A(K) =

(
1K−1 0K−1

)
=
(∑K−1

k′=1 ek′ 0K−1

)
∈ R(K−1)×2,

where 0n and 1n are n-vectors of zeroes and ones (respectively) and ek is the standard
basis vector in RK−1 with a 1 in the kth entry and zeroes elsewhere, and A(k) ∈ R(K−1)×2

for all k. Note that
Zi = A(yi) ⊗ xi. (38)

Let

B =


1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
...

. . .
...

0 0 0 · · · 1

 =
(
e1

∑2
k′=1 ek′ · · ·

∑K−1
k′=1 ek′

)
∈ R(K−1)×(K−1);

that is; the columns Bk =
∑k

`=1 e`. We will make use of the following lemmas, which we
prove later in this section:

Lemma 9.
K∑
k=1

nk
n
A(k)

(
A(k)

)>
= BDB>,

where
D := diag

(
n1 + n2

n
, . . . ,

nK−1 + nK
n

)
∈ R(K−1)×(K−1).

Lemma 10. σ2min (B) ≥ 1/2.

Lemma 11. For arbitrary matrices A, B, and C, if B � C and A � 0 then A ⊗B �
A⊗C.
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Lemma 12. With probability at least 1−K exp
{
−1

2π
2
rare,minn

}
it holds that min{n1, . . . , nK} >

πrare,minn/2, where nk :=
∑n

i=1 1 {yi = k} is the number of observations in class k.

Lemma 13. Under the assumptions of Proposition 7, there exist constants c, C > 0 such
that λmin

(
1
nk

∑
i:yi=k

xix
>
i

)
≥ a for all k ∈ {1, . . . ,K − 1} with probability at least

1− 2K exp

{
−c
(√

nπrare,min

2
− C√pn −

√
a

λ∗min

)2
}
−K exp

{
−1

2
π2rare,minn

}
,

where nk is the number of observations in class k and λ∗min := mink∈{1,...,K}
{
λmin

(
E
[
X>X | y = k

])}
.

Using a union bound, there exists an event with probability at least

1− 2K exp

{
−1

2
π2rare,minn

}
− 2K exp

{
−c
(√

nπrare,min

2
− C√pn −

√
a

λ∗min

)2
}
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on which the conclusions of all of the above lemmas hold. On this event we have

inf
{θ∈C(S):‖θ‖2=1}

{
θ>

(
1

n

n∑
i=1

ZiZ
>
i

)
θ

}
≥ inf

{θ∈Rpn(K−1):‖θ‖2=1}

{
θ>

(
1

n

n∑
i=1

ZiZ
>
i

)
θ

}

= λmin

(
1

n

n∑
i=1

ZiZ
>
i

)
(a)
= λmin

(
1

n

n∑
i=1

(
A(yi) ⊗ xi

)(
A(yi) ⊗ xi

)>)

= λmin

(
1

n

n∑
i=1

(
A(yi)

(
A(yi)

)>)
⊗
(
xix

>
i

))

= λmin

 1

n

K∑
k=1

∑
i:yi=k

(
A(yi)

(
A(yi)

)>)
⊗
(
xix

>
i

)
= λmin

 1

n

K∑
k=1

(
A(k)

(
A(k)

)>)
⊗

 ∑
i:yi=k

xix
>
i


= λmin

 K∑
k=1

(
nk
n
A(k)

(
A(k)

)>)
⊗

 1

nk

∑
i:yi=k

xix
>
i


(b)

≥ λmin

(
K∑
k=1

(
nk
n
A(k)

(
A(k)

)>)
⊗ (aIp)

)
(c)
= λmin

(
K∑
k=1

nk
n
A(k)

(
A(k)

)>)
λmin (aIp)

(d)
= λmin

(
BDB>

)
λmin (aIp)

(e)

≥ a min
k∈{1,...,K−1}

{
nk + nk+1

n

}
λmin

(
BB>

)
(f)

≥ a

4
min

k∈{1,...,K−1}

{
nk + nk+1

n

}
(g)
>

aπrare,min

4
,

where in (a) we used (38), (b) holds with high probability by Lemmas 11 and 13 because
λmin

(
1
nk

∑
i:yi=k

xix
>
i

)
≥ a implies 1

nk

∑
i:yi=k

xix
>
i � aIp for all k, in (c) we used the

fact that for matricesM ,N the eigenvalues ofM ⊗N are the products of the eigenvalues
of M and N and both of the factor matrices are positive semidefinite, in (d) we applied
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Lemma 9, (e) follows from BDB> � mink∈{1,...,K−1}

{
nk+nk+1

n

}
BB>, in (f) we applied

Lemma 10, and (g) follows from Lemma 12.

Proof of Lemma 8. For convenience, denote θ1 = β1 and θk = ψk, k ∈ {2, . . . ,K−1}. Let

ε̂λnθ =

((
ε̂λnθ,1

)>
,
(
ε̂λnθ,2

)>
, . . . ,

(
ε̂λnθ,K−1

)>)>
:=

((
θ̂
λn
1 − θ1

)>
,
(
θ̂
λn
2 − θ2

)>
, . . . ,

(
θ̂
λn
K−1 − θK−1

)>)>
.

Note that βk =
∑

k′≤k θk′ . Let β := (β>1 ,β
>
2 , . . . ,β

>
K−1)

>, and let

β̂
λn
k :=

∑
k′≤k

θ̂k′ , k ∈ {1, . . . ,K − 1}

be the estimates of β yielded from the estimates of θ. Let

ε̂λnβ =

((
ε̂λnβ,1

)>
,
(
ε̂λnβ,2

)>
, . . . ,

(
ε̂λnβ,K−1

)>)>
:=

((
β̂
λn
1 − β1

)>
,
(
β̂
λn
2 − β2

)>
, . . . ,

(
β̂
λn
K−1 − βK−1

)>)>
,

and observe that

ε̂λnβ =

((
β̂
λn
1 − β1

)>
,
(
β̂
λn
2 − β2

)>
, . . . ,

(
β̂
λn
K−1 − βK−1

)>)>

=

(θ̂λn1 − θ1)> ,
∑
k′≤2

θ̂k′ −
∑
k′≤2

θk′

> , . . . ,
 ∑
k′≤K−1

θ̂k′ −
∑

k′≤K−1
θk′

>

>

=

(θ̂λn1 − θ1)> ,
∑
k′≤2

ε̂λnθ,k′

> , . . . ,
 ∑
k′≤K−1

ε̂λnθ,k′

>

>

. (39)

Then∥∥∥ε̂λnβ,1∥∥∥
1

(a)

≤
K−1∑
k=1

∥∥∥ε̂λnβ,k∥∥∥
1

(b)
=

K−1∑
k=1

∥∥∥∥∥∥
∑
k′≤k

ε̂λnθ,k′

∥∥∥∥∥∥
1

(c)

≤
K−1∑
k=1

∑
k′≤k

∥∥∥ε̂λnθ,k′∥∥∥
1

=
K−1∑
k=1

(K − k)
∥∥∥ε̂λnθ,k∥∥∥

1

≤ (K − 1)
K−1∑
k=1

∥∥∥ε̂λnθ,k∥∥∥
1

= (K − 1)
∥∥∥ε̂λnθ ∥∥∥

1
.
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where in (a) and (c) we used the triangle inequality and in (b) we used (39). Lastly,∥∥∥β̂λn − β∥∥∥
2
≤
∥∥∥β̂λn − β∥∥∥

1
is a property of the `1 and `2 norms.

Proof of Lemma 9.

K∑
k=1

nk
n
A(k)

(
A(k)

)>
=

n1
n
A(1)

(
A(1)

)>
+
K−1∑
k=2

nk
n
A(k)

(
A(k)

)>
+
nK
n
A(K)

(
A(K)

)>
=

n1
n

(
0K−1 e1

)(0>K−1
e>1

)
+
K−1∑
k=2

nk
n

(∑k−1
k′=1 ek′

∑k
k′=1 ek′

)(∑k−1
k′=1 e

>
k′∑k

k′=1 e
>
k′

)

+
nK
n

(∑K−1
k′=1 ek′ 0K−1

)(∑K−1
k′=1 e

>
k′

0>K−1

)
=

n1
n

(
0K−10

>
K−1 + e1e

>
1

)
+

K−1∑
k=2

nk
n

(
k−1∑
k′=1

ek′
k−1∑
k′=1

e>k′ +

k∑
k′=1

ek′
k∑

k′=1

e>k′

)

+
nK
n

(
K−1∑
k′=1

ek′
K−1∑
k′=1

e>k′ + 0K−10
>
K−1

)

=
n1
n
B1B

>
1 +

K−1∑
k=2

nk
n

(
Bk−1B

>
k−1 +BkB

>
k

)
+
nK
n
BK−1B

>
K−1

=
K−1∑
k=1

nk + nk+1

n
BkB

>
k

= BDB>.

Proof of Lemma 10. B is full rank with inverse

B−1 =


1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
0 0 1 −1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1

 .
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We have
‖B−1‖op ≤

√
‖B−1‖1‖B−1‖∞ =

√
2 · 2 = 2,

where we have used that the `1 norm of each column and row is at most 2. Then the result
follows from observing that σmin (B) = 1/‖B−1‖op.

Proof of Lemma 11. The matrix A ⊗ (B − C) is the Kronecker product of two positive
semidefinite matrices and is therefore positive semidefinite.

Proof of Lemma 12. First we state a lemma we will use.

Lemma 14. Suppose that for all x ∈ S and k ∈ {1, . . . ,K} it holds that P(yi = k | x) ≥
πrare,min. Let nk be the number of observations in class k from a data set of size n. Then
for any q ∈ {1, . . . , bnπrare,minc},

P

(
K⋂
k=1

{nk > q}

)
≥ 1−K exp

{
−2n

(
πrare,min −

q

n

)2}
.

Proof. Provided later in this section.

Note that nπrare,min/2 ≤ bnπrare,minc because x/2 ≤ bxc for all x ≥ 2 and nπrare,min ≥ 2
due to assumption (37). So the assumptions of Lemma 14 are satisfied for q = nπrare,min/2,
and there are more than nπrare,min/2 observations in each class with probability at least

1−K exp
{
−2n (πrare,min − πrare,min/2})2

}
= 1−K exp

{
−1

2
π2rare,minn

}
.

Proof of Lemma 13. We will prove the result by using a concentration inequality on the
minimum singular value of a random matrix (which will correspond to the square root of the
minimum eigenvalue of 1

nk

∑
i:yi=k

xix
>
i ; recall that the eigenvalues of A

>A are the squares
of the singular values of A). However, the result we use applies only to random matrices
with isotropic second moment matrices, so we need to standardize 1

nk

∑
i:yi=k

xix
>
i by its

inverse square root second moment matrix. We can relate this quantity to the minimum
eigenvalue of 1

nk

∑
i:yi=k

xix
>
i by our claim (that we will verify later) that for a symmetric

positive semidefinite matrix S and symmetric positive definite Σ it holds that

λmin (S) ≥ λmin

(
Σ−1/2SΣ−1/2

)
λmin (Σ) . (40)

Then substituting S = 1
nk

∑
i:yi=k

xix
>
i and Σ = Σk = E

[
xix

>
i | yi = k

]
(which we as-

sumed has a strictly postive minimum eigenvalue and is therefore invertible) into (40) yield

62



that on an event where nk =
∑n

i=1 1 {yi = k} ≥ 1, we have

λmin

 1

nk

∑
i:yi=k

xix
>
i

 ≥ λmin

 1

nk
Σ
−1/2
k

∑
i:yi=k

xix
>
i Σ
−1/2
k

λmin (Σk)

≥ λmin

 1

nk
Σ
−1/2
k

∑
i:yi=k

xix
>
i Σ
−1/2
k

λ∗min, (41)

where the second line uses our assumption from the statement of Theorem 3 and the fact
that 1

nk
Σ
−1/2
k

∑
i:yi=k

xix
>
i Σ
−1/2
k is almost surely positive semidefinite. Next we lower-

bound the minimum eigenvalue of the random matrix 1
nk

Σ
−1/2
k

∑
i:yi=k

xix
>
i Σ
−1/2
k using

a result from Vershynin [2012]. Observe that the ψ2 norm of a bounded random vector
T ∈ Rp can be upper-bounded as follows:

‖T ‖ψ2 = sup
v:v∈Rp,‖v‖2=1

{
‖T>v‖ψ2

}
= sup

v:v∈Rp,‖v‖2=1

{
inf

{
t > 0 : E exp

([
T>v

]2
t2

)
≤ 2

}}

≤ inf

{
t > 0 : exp

(
‖T ‖2∞
t2

)
≤ 2

}
=
‖T ‖∞√

log 2
.

Therefore under our assumptions xi | y is bounded and therefore subgaussian, with ψ2

norm at most ‖xi‖ψ2 ≤ ‖x‖∞/
√

log 2 = C4/
√

log 2 for all k. So for any k ∈ {1, . . . ,K}, we
have from Theorem 5.39 in Vershynin [2012] that for any t ≥ 0 there exists c > 0 such that
the event

P

σmin

 1

nk

∑
i:yi=k

Σ
−1/2
k xi

 ≥ √nk − C√pn − t | y
 ≥ 1− 2 exp{−ct2}

holds almost surely for C = C2
4/(log 2)

√
log(9)/c1, where C4 is as defined in the statement

of Theorem 3, c1 is a constant from Vershynin [2012], σmin(·) denotes the minimum singular
value, and if the set {i : yi = k} is empty we define 1

nk

∑
i:yi=k

Σ
−1/2
k xi to equal 0p (and note

that the inequality then trivially holds with probability one in this case, because nk = 0 so
the right side is nonpositive). For k ∈ {1, . . . ,K} and t ≥ 0, define the event Ek(t) by

Ek(t) :=

σmin

 1

nk

∑
i:yi=k

Σ
−1/2
k xi

 ≥ √nk − C√pn − t
 ,
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and observe that
P(Ek(t)) ≥ 1− 2 exp{−ct2} (42)

by applying Theorem 5.39 and marginalizing over y. Now we consider a particular choice
of t. From our assumption (37) we have

nπrare, min > 2

(
C
√
pn +

√
a

λ∗min

)2

⇐⇒
√
nπrare,min

2
− C√pn −

√
a

λ∗min
> 0,

so we can choose t =
√
nπrare,min/2− C

√
pn −

√
a

λ∗min
, yielding that on

Ek
(√

nπrare,min

2
− C√pn −

√
a

λ∗min

)
∩ {nk ≥ 1}

we have

σmin

 1

nk

∑
i:yi=k

Σ
−1/2
k xi

 ≥ √nk − C√pn −√nπrare,min

2
+ C
√
pn +

√
a

λ∗min

=
√
nk −

√
nπrare,min

2
+

√
a

λ∗min
. (43)

That is, on this event we can lower-bound the minimum eigenvalue of 1
nk

Σ
−1/2
k

∑
i:yi=k

xix
>
i Σ
−1/2
k

provided that nk is at least 1 and large enough that the right side of (43) is nonnegative.
Next we work on lower-bounding nk with high probability. Consider the event

N :=
{
nk ≥

nπrare,min

2
∀k ∈ {1, . . . ,K}

}
.

Notice that onN we have that the lower bound in (43) is at least
√
a/λ∗min and nk ≥ 1 for all

k due to (37). That is, for any k, on N ∩ Ek
(√

nπrare,min/2− C
√
pn −

√
a

λ∗min

)
inequality

(43) holds and yields σmin

(
1
nk

∑
i:yi=k

Σ
−1/2
k xi

)
≥
√
a/λ∗min. Since the eigenvalues of

1
nk

∑
i:yi=k

Σ
−1/2
k xix

>
i Σ
−1/2
k are the squares of the singular values of 1

nk

∑
i:yi=k

Σ
−1/2
k xi,

on N ∩ Ek
(√

nπrare,min/2− C
√
pn −

√
a

λ∗min

)
we have

λmin

 1

nk

∑
i:yi=k

Σ
−1/2
k xix

>
i Σ
−1/2
k

 ≥ a

λ∗min
> 0.
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Finally, substituting this into (41) we have that on
(⋂K

k=1 Ek
(√

nπrare,min/2− C
√
pn −

√
a

λ∗min

))
∩

N

λmin

 1

nk

∑
i:yi=k

xix
>
i

 ≥ a

λ∗min
λ∗min = a ∀k ∈ {1, . . . ,K}.

Using a union bound, this holds with probability at least

P

((
K⋂
k=1

Ek
(√

nπrare,min

2
− C√pn −

√
a

λ∗min

))
∩N

)

≥ 1−
K∑
k=1

P
(
Eck
(√

nπrare,min

2
− C√pn −

√
a

λ∗min

))
− P (N c)

≥ 1− 2K exp

{
−c
(√

nπrare,min

2
− C√pn −

√
a

λ∗min

)2
}
−K exp

{
−1

2
π2rare,minn

}
,

where in the last step we applied (42) and Lemma 12.
Finally, we show (40). Observe that for any v with ‖v‖2 = 1

v>Sv =
(
Σ1/2v

)>
Σ−1/2SΣ−1/2

(
Σ1/2v

)
≥ λmin

(
Σ−1/2SΣ−1/2

)
‖Σ1/2v‖22

= λmin

(
Σ−1/2SΣ−1/2

)
v>Σv

≥ λmin

(
Σ−1/2SΣ−1/2

)
λmin (Σ) ,

proving the claim.

Proof of Lemma 14. By Hoeffding’s inequality we have that for any k ∈ {1, . . . ,K} and
any q ∈ {1, . . . , bnπrare,minc}, P (nk ≤ q) ≤ exp

{
−2n

(
πrare,min − q

n

)2}. Then using a union
bound, we have

P

(
K⋂
k=1

{nk > q}

)
= 1− P

(
K⋃
k=1

{nk ≤ q}

)

≥ 1−
K∑
k=1

P (nk ≤ q)

≥ 1−K exp

{
−2n

(
πrare,min −

q

n

)2}
.
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G Estimating PRESTO

In this section we will use the notation and terminology of Wurm et al. [2021], with the
exception of continuing to use our convention of K total categories. We fit PRESTO by
reparameterizing the efficient coordinate descent algorithm used to estimate `1-penalized
ordinal regression models in the R ordinalNet [Wurm et al., 2021] package, in much the
same way that the generalized lasso can be implemented using reparameterization; see
Section 4.5.1.1 of Hastie et al. [2015] for a textbook-level discussion. (See Section 4.5.1.1 of
Hastie et al. 2015 for more details on how this is done.) The ordinalNet package implements
`1-penalized ordinal regression, including an `1-penalized relaxation of the proportional odds
model. The parameters we seek to model are ηi ∈ RK−1, which model the probabilities of
the K outcomes by the relation

ηi = g(pi),

where pi ∈ SK−1 (where SK−1 := {p : p ∈ (0, 1)K−1, ‖p‖1 < 1} are the probabilities
of outcomes {1, . . . ,K − 1} (in particular, pik = P(yi = k) for k ∈ {1, . . . ,K − 1} and
P(yi = K) = 1 −

∑K−1
k=1 pik ) and g : SK−1 → RK−1 is an invertible function. For our

model, the forwards cumulative probability model, where pik = P(yi ≤ k),[
g(pi)

]
k

= log

( ∑k
k′=1 pik′

1−
∑k

k′=1 pik′

)
, k ∈ {1, . . . ,K}.

We choose the nonparallel model

ηi = c+B>xi,

where xi is the ith row of X, c ∈ RK−1 is a vector of intercepts, and

B =
[
B·1 · · · B·K−1

]
is a p× (K − 1) matrix of coefficients. Observe that we can simply write

ηi = X̃iβ,

for β ∈ R(K−1)(p+1) defined by

β =


c
B·1
...

B·K−1


and X̃i ∈ R(K−1)×(K−1)(p+1) defined by

X̃i =


x>i 0>p · · · 0>p 0>p
0>p x>i · · · 0>p 0>p

IK−1
...

...
. . .

...
...

0>p 0>p · · · x>i 0>p
0>p 0>p · · · 0>p x>i

 =
(
IK−1 IK−1 ⊗ x>i

)
.
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The R ordinalNet package solves the convex [Wurm et al., 2017, Pratt, 1981] optimization
problem

arg min
β

− 1

n

n∑
i=1

`i

(
g−1

(
X̃
>
i β
))

+ λ

(K−1)(p+1)∑
q=K

|βq|


where

`i(pi) =
K−1∑
k=1

1{yi = k} log pik + 1{yi = K} log

(
1−

K−1∑
k=1

pik

)
.

We would like to place an `1 penalty on the first differences Bj,k+1 − Bjk for all k ∈
{1, . . . ,K − 2}. We can do this through the parameterization Ψ ∈ Rp×(K−1) defined by

Ψjk =

{
Bj1, j ∈ [p], k = 1,

Bjk −Bj,k−1, j ∈ [p], k ∈ {2, . . . ,K − 1}.

Observe that these matrices are related by

Bjk =

k∑
k′=1

Ψjk′ ,

so

ηik = c0k +B>·kxi = c0k +
k∑

k′=1

Ψ>·k′xi, k ∈ {1, . . . ,K − 1}.

Therefore we can simply write
ηi = X̃

′
iβ
′,

for β′ ∈ R(K−1)(p+1) defined by

β′ =


c

Ψ·1
...

Ψ·K−1


and X̃

′
i ∈ R(K−1)×(K−1)(p+1) defined by

X̃
′
i =


x>i 0>p · · · 0>p 0>p
x>i x>i · · · 0>p 0>p

IK−1
...

...
. . .

...
...

x>i x>i · · · x>i 0>p
x>i x>i · · · x>i x>i

 . (44)
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We then seek to solve the slightly modified optimization problem (modification highlighted)

arg min
β′

−
1

n

n∑
i=1

`i

g−1
(X̃ ′i)>︸ ︷︷ ︸

(∗)

β′


+ λ

(K−1)(p+1)∑
q=K

∣∣β′q∣∣ .


Though this can not be implemented within the framework of the existing ordinalNet
package, the above modification only requires changing a handful of lines of the publicly
available source code in the ordinalNet package. We will make our code publicly avail-
able in order to show our implementation before the camera-ready deadline. Though our
implementation is simple, using the modified design matrix (the change above) could cause
convergence of parameter estimation to be slow, because the resulting lasso problem effec-
tively has highly correlated features, which slows the convergence of coordinate descent.
See Section 4.5.1.1 of Hastie et al. [2015] for a textbook-level discussion of this point.
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