
Fused Extended Two-Way Fixed Effects 
for Difference-in-Differences With 

Staggered Adoptions

Greg Faletto 
Data Scientist, VideoAmp 

USC Causal Inference Reading Group 
February 8th, 2024Access the paper



1 Difference-in-Differences Background 
2 Extended Two-Way Fixed Effects 
3 FETWFE 
4 Theory 
5 Simulation Studies 

Outline

2

Access the paper



Difference-in-Differences
Suppose we observe units at two times. 

First time period: no units receive treatment.  

Second time period: some do (not randomly assigned). 

Let  be the potential outcome at time  for units who are never 
treated, and  be the potential outcome at time  for units who are 
treated at time . 

Notice: we define potential outcomes in terms of (time-invariant) 
treatment group assignment, not treatment status. 

Goal: estimate the effect of treatment on the treated units, 

, 

where  denotes that unit  began treatment at time .

yit(0) t
yit(2) t

t = 2

τ := 𝔼[yi2(2) − yi2(0) ∣ Wi = 2]

Wi = 2 i 2

3



Difference-in-Differences Estimator

Observed responses of never-treated 
units give us information about changes 
in external conditions from  to 2. 

Parallel trends assumption: change in 
untreated potential outcomes from  
to 2 would have been same for both 
groups: 

 

Parallel trends allows for selection 
bias as long as bias is time-invariant:

t = 1

t = 1

𝔼[yi2(0) − yi1(0) ∣ Wi = 2] = 𝔼[yi2(0) − yi1(0) ∣ Wi = 0] .

Image source: Cunningham, Scott. Causal inference: The 
mixtape. Yale university press, 2021. Figure 9.2.
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𝔼[yi2(0) ∣ Wi = 2] − 𝔼[yi2(0) ∣ Wi = 0] = 𝔼[yi1(0) ∣ Wi = 2] − 𝔼[yi1(0) ∣ Wi = 0] .

Selection bias at t = 2 Selection bias at t = 1



 

Under parallel trends, we can estimate 
the treatment effect by adjusting the 
sample mean difference in outcomes at 

 using the pre-treatment difference: 

 

This is the canonical difference-in-
differences estimator. 

Notice: the crucial parallel trends 
assumption is untestable—depends 
on unobserved potential outcomes.

𝔼[yi2(0) − yi1(0) ∣ Wi = 2] = 𝔼[yi2(0) − yi1(0) ∣ Wi = 0]

t = 2

̂τ = y2(2) − y2(0) − [y1(2) − y1(0)]
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selection biasτ+ selection bias

Difference-in-Differences Estimator

Image source: Cunningham, Scott. Causal inference: The 
mixtape. Yale university press, 2021. Figure 9.2.



Two-Way Fixed Effects
Equivalent way to calculate the difference-in-differences estimator: 
estimate  in the linear regression 

 

where:  

 is a separate intercept for each unit 

 is a separate intercept for .  

This is called a two-way fixed effects regression. 

(Notice: we got here not by assuming linearity, but instead by making 
some reasonable assumptions about the potential outcomes—a linear 
model just happens to have the right estimand.)

̂τ

yit = αi + γ2 ⋅ 1{t = 2} + τ ⋅ 1{t = 2}1{Wi = 2} + ϵit,

αi

γ2 t = 2
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Two-Way Fixed Effects
 

Now that we’re calculating a linear regression… 

Can we allow an arbitrary number of times instead of just 2? 

Allow units to start treatment at arbitrary times after time 1? 

(Example application: effect of a law that is passed state-by-state over 
time, like public smoking bans or unilateral [“no-fault”] divorce.) 

In general: not with this model! With arbitrary  and staggered 
adoptions, this model will be biased if treatment effects vary over 
time and/or between cohorts. 

How do we need to change the model?

yit = αi + γ2 ⋅ 1{t = 2} + τ ⋅ 1{t = 2}1{Wi = 2} + ϵit

T
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Diff-in-Diff With Staggered Adoptions

Notation: suppose we observe  time periods. We have cohorts that 
begin treatment at times  and continue receiving 
treatment until . (Staggered adoptions) 

Wooldridge (2021): We can achieve unbiased linear regression with 
time-invariant (pre-treatment) covariates! We just need more 
parameters.  

Key ingredients: 

Estimate separate treatment effects for each cohort and time,  

Add lots of parameters that are linear in  (see Assumption 
LINS in the paper, and the slide after next). 

Wooldridge calls this the extended two-way fixed effects model.

T
r ∈ ℛ ⊆ {2,3,…, T}

T

τrt

Xi
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Building Towards Extended Two-Way 
Fixed Effects

Wooldridge (2021): in two-way fixed effects, we don’t need fixed effects for 
every unit, we can just estimate the coefficient  in the linear regression 

 

where: 

 is the expected response for the never-treated units at   

 is the expected response for the treated units at  (  is 
the selection bias) 

 is the expected response for the never-treated units at  
(  is the expected trend) 

 corresponds to the average treatment effect on the treated units at 
 under parallel trends.

̂τ

yit = η + ν2 + γ2 ⋅ 1{t = 2} + τ ⋅ 1{t = 2}1{Wi = 2} + ϵit,

η t = 1

η + ν2 t = 1 ν2

η + γ2 t = 2
γ2

τ
t = 2
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Extended Two-Way Fixed Effects

Extended two-way fixed effects (ETWFE; Wooldridge 2021): 

yit = η + γt + νr + X(i)⋅(κ + ξt + ζr) + Witτrt + ·X(ir)ρrt + ϵit

Never-treated units’ 
conditionally 
expected 
responses at t = 1

Conditional trend 
from  to t = 1 t

Conditional 
selection bias

Marginal 
treatment 
effects

Treatment-covariate 
interactions

Treatment 
dummies

Cohort-centered 
covariates
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Two-way fixed effects (TWFE): 

 yit = η + ν2 + γ2 ⋅ 1{t = 2} + τ ⋅ 1{t = 2}1{Wi = 2} + ϵit,



Extended Two-Way Fixed Effects

What exactly have we gained? 

Unbiased estimation of treatment effects in much more general setting 

Parallel trends assumption is replaced with conditional parallel 
trends: generally more plausible than marginal parallel trends. 

What price do we pay? 

We have a lot of parameters to estimate! If there are lots of time 
periods or covariates, our parameter estimates may be too noisy to be 
useful. 

In other words, ETWFE may be too flexible. (Bad bias/variance 
tradeoff.) Flexibility avoids bias (very important in causal 
inference!), but maybe this model is a bit much.

12



Extended Two-Way Fixed Effects
Wooldridge proposes an ad hoc remedy for the problem of too many 
parameters: assume some of the parameters are equal (“restrictions”). 

Example: maybe treatment effects don’t actual differ in time since 
treatment. Assume  for all cohorts at all post-treatment times. 

Or, weaken this: assume there is an “early treatment” and “late 
treatment” effect, so that we only have two treatment effects to 
estimate for each cohort instead of . 

Problem: is this wishful thinking?  

Probably some restrictions like this are true. But unless we know the 
exact correct restrictions, we risk re-introducing the bias we removed 
by adding these parameters in the first place. 

Can we use the fact that some of these restrictions probably exist in 
the data without putting our “thumb on the scale” by selecting the 

restrictions by hand?

τrt = τr

T − r + 1
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Fused Extended Two-Way Fixed Effects

Idea: let’s reduce the number of parameters to estimate using sparse 
(bridge) fusion regularization on ETWFE.  

Encode our expectations about which parameters might be equal 
in the way that we estimate the model. Then allow the model to 
learn the restrictions from the data automatically. 

Example: for each cohort, bridge penalty on the differences 
between adjacent treatments:  for . 

This encodes our belief that some of the treatment effects in adjacent 
times are probably close together, so we can set them equal unless 
the data give us a good reason to estimate separate values.

|τr,t+1 − τrt |
q q ∈ (0,2]
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Fused Extended Two-Way Fixed Effects

We collect all of the ETWFE coefficients in a vector  and 
create a matrix  that constructs these restrictions: the 
vector  contains entries with terms like .  

We also construct a design matrix  containing all of the 
fixed effects, covariates, etc. 

We estimate the ETWFE regression with an added penalty term 
, with tuning parameter  chosen by BIC (for example). 

This is the fused extended two-way fixed effects model: for , 

β* ∈ ℝpN

DN ∈ ℝpN×pN

DN β* τr,t+1 − τrt

Z ∈ ℝNT×pN

λN∥DN β∥q
q λN

q > 0

̂β(q) := arg min
β∈ℝp {∥y − Zβ∥2

2 + λN∥DN β∥q
q} .
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What can we estimate with FETWFE?
Lots of things! The building blocks are: 

Average treatment effect for treated units in cohort  at time : 
. 

Average treatment effect for treated units in cohort  at time  
conditional on covariates : 

. 

Can construct linear combinations of these: given any set of constants 
, we can consider the estimand 

 

and likewise for .

r t
τATT(r, t) := 𝔼[yit(r) − yit(0) ∣ Wi = r]

r t
x

τCATT(r, t, x) := 𝔼[yit(r) − yit(0) ∣ Wi = r, Xi = x]

{ψrt}r∈ℛ,t≥r

∑
r∈ℛ

T

∑
t=r

ψrtτATT(r, t)

τCATT(r, t, x)
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What can we estimate with FETWFE?
Can construct linear combinations of these: given any set of constants 

, we can consider the estimand 

 

and likewise for .  

Given the right choice of , we can use these to estimate 
(for example): 

Average treatment effects for a cohort (take a simple average 
across time) 

Average treatment effect across all cohorts and all times 

Average treatment effect at a fixed time since treatment began

{ψrt}r∈ℛ,t≥r

∑
r∈ℛ

T

∑
t=r

ψrtτATT(r, t)

τCATT(r, t, x)

{ψrt}r∈ℛ,t≥r
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How exactly will we estimate these?

 

With the estimated FETWFE regression coefficients: 

Average treatment effect for treated units in cohort  at time : 
. 

Average treatment effect for treated units in cohort  at time  
conditional on covariates : 

, where 

 is the sample mean for units in 

cohort .

yit = η + γt + νr + X(i)⋅(κ + ξt + ζr) + Witτrt + ·X(ir)ρrt + ϵit

r t
̂τATT(r, t) := ̂τrt

r t
x

̂τCATT(r, t, x) := ̂τrt + ̂ρ⊤
rt (x − Xr)

Xr :=
1
Nr

N

∑
i=1

1{Wi = r} ⋅ Xi

r
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Behind the Curtain: Intuition Behind the 
Theory

We’ve constructed an asymptotically unbiased regression (under parallel trends, 
linearity assumption, etc.). 

We’ve also added a penalty term that enforces plausible restrictions: 

 

Consider the change in coordinates . If the differences matrix  is 
invertible, we have , and we can solve the equivalent problem 

 

using bridge regression on the modified matrix , then get . 

If a subset of the restrictions hold exactly (sparsity of ), with some “plumbing” 
to connect the coordinates we can use off-the-shelf bridge regression theory 
on this modified optimization problem to get theory for FETWFE.

̂β(q) := arg min
β∈ℝpN

{∥y − Zβ∥2
2 + λN∥DN β∥q

q} .

θ := DN β DN
β = D−1

N θ

̂θ(q) := arg min
θ∈ℝpN

{∥y − ZDN
−1θ∥2

2 + λN∥θ∥q
q}

ZD−1
N

̂β(q) = D−1
N

̂θ(q)

θ
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Why bridge regression?
There’s nothing special about bridge regression except that it allows us 
to get asymptotic normality (in a single step!) for . Important 
for economists—want to construct confidence intervals, not just get 
good point estimates. 

I considered other options that allow for inference and/or asymptotic 
normality. Some of these could be reasonable too, and you could 
develop similar theory. 

Adaptive lasso: requires two steps (isn’t this complicated enough 
already?) 

De-biased lasso: point estimates are no longer sparse, which is a 
nice property for interpretability. 

Post-selection inference for the lasso: stepwise procedure (isn’t 
this complicated enough already?)

q ∈ (0,1)

23



Why bridge regression?

The price we pay with bridge regression for  is that the 
optimization is non-convex, so FETWFE might not scale well with large 
data.  

Also, my theory requires , which could be restrictive.  

(You could prove consistency of FETWFE with existing lasso 
theory for  and . But not asymptotic normality 
unless you switched to one of the strategies from the last slide.) 

q ∈ (0,1)

pN ≤ NT

pN ≫ NT q = 1

24



Theoretical Guarantees: Main 
Assumptions

Conditional parallel trends (time-invariant conditional selection bias): 
 a.s. for all . 

(Trend is mean-independent of treatment conditional on .) 

Conditional no anticipation:  almost 
surely (“a.s.”) for all , . 

Linearity: the conditionally expected trends, selection biases, untreated 
potential outcomes, and treatment effects are all linear in . (By the way, 

, and  may tend to infinity with , but not too quickly.) 

Sparsity: The vector  is sparse, with  nonzero entries. 
(  can increase with  subject to regularity conditions for first two results.) 

Full-column rank design matrix: minimum eigenvalue of  is 

positive—requires .

𝔼[yit(0) − yi1(0) ∣ Wi, Xi] = 𝔼[yit(0) − yi1(0) ∣ Xi] t ≥ 2

Xi

𝔼[yit(r) − yit(0) ∣ Wi = r, Xi] = 0
r ∈ {2,…, T} t < r

Xi
Xi ∈ ℝdN dN N

θ* = Dβ* sN < pN
sN N

1
NT

Z⊤Z

pN ≤ NT

25



Theorem 6.1: Consistency

Theorem 6.1: Under the previous assumptions and some mild 
regularity conditions on the distributions of , , and , for any 

 and, it holds that 
  

converges in probability to 0 at a rate at least as fast as .  

If  (and therefore  is fixed, so does  
  

(treating  as fixed).

Xi yi Wi
q ∈ (0,2]

̂τATT(r, t) − τATT(r, t)
pN /N

dN pN)
̂τCATT(r, t, x) − τCATT(r, t, x)

x

26



Theorem 6.1: Consistency

Since  is fixed, given any set of constants  it follows that 

the same holds for the estimator  and its 

corresponding estimand. 

 is the lasso and  is ridge regression. So FETWFE is 
consistent for these convex optimization problems.

T {ψrt}r∈ℛ,t≥r

∑
r∈ℛ

T

∑
t=r

ψrt ̂τATT(r, t)

q = 1 q = 2

27



Theorem 6.2: Restriction Selection 
Consistency

Theorem 6.2: In addition to the previous assumptions, suppose that 

the largest eigenvalue of  is almost surely less than a finite 

constant, and choose any . Then as , FETWFE 
identifies the correct restrictions with probability tending to 1. 

Takeaway: FETWFE successfully selects the restrictions for us—
we don’t have to choose them by hand. 

Can’t use the lasso or ridge regression anymore, though (for this and 
the next result)—have to use nonconvex bridge regression.  

(In exchange, we don’t require something like the “irrepresentable 
condition” or “neighborhood stability condition” needed for lasso 
selection consistency.)

1
NT

Z⊤Z

q ∈ (0,1) N → ∞
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Theorem 6.3: In addition to assumptions of Theorem 6.2, assume that 
the sparsity  is fixed as  and some additional regularity 
conditions. Then if , the sequence of random variables 

   

converges in distribution to a mean 0 Gaussian random variable with 
asymptotic variance that depends only on the model with all of the 
correct restrictions identified.  

(If , sequence converges in probability to 0.) 

Again, we can make the same statement about the estimator 

.

sN = s N → ∞
τATT(r, t) ≠ 0

NT( ̂τATT(r, t) − τATT(r, t))

τATT(r, t) = 0

∑
r∈ℛ

T

∑
t=r

ψrt ̂τATT(r, t)

Theorem 6.3: Oracle Efficiency
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FETWFE is an oracle procedure: 

Even if the number of covariates grows asymptotically, under the 
assumptions of Theorem 6.3 FETWFE converges at the same 

 rate as an ordinary least squares model estimated using all 
of the correct restrictions. 

The asymptotic variance of FETWFE is not affected by the 
parameters we didn’t need to separately estimate.

1/ N

Theorem 6.3: Oracle Efficiency

30



Theorem 6.4: Asymptotic Confidence Intervals  
(With Feasible Variance Estimator)

Maintain the assumptions from Theorem 6.3. Then for any , 

  

where 

 

 is the cdf of the standard Gaussian distribution, and  is a a 
finite sample variance estimator (explicitly defined in the paper).

α ∈ (0,1)

lim
N→∞

ℙ ( ∑
r∈ℛ

T

∑
t=r

ψrtτATT(r, t) ∈ CIN(α)) = 1 − α,

CIN(α) := ∑
r∈ℛ

T

∑
t=r

ψrt ̂τATT(r, t) ± Φ−1 (1 −
α
2 ) ̂v(C)

N

NT
,

Φ( ⋅ ) ̂v(C)
N
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Theorem 6.4: Asymptotic Normality With 
Feasible Variance Estimator

Not in paper yet, but we also get oracle efficiency and asymptotical 
normality for conditional average treatment effects  
under fixed  if we split the data:  

Half is used for estimating model, 

Half used for estimating cohort sample means of covariates 

 

(I think this can probably also be done using cross-fitting, which 
would use the data more efficiently.)

̂τCATT(r, t, x)
dN

Xr =
1
Nr

N

∑
i=1

1{Wi = r} ⋅ Xi

32



A Peek at Some Other Results 
Probability-weighted average treatment effects

Consider the estimands 

 .  

These are probability-weighted treatment effects. 

Example: we can define the overall average treatment effect for units 
at the time they begin treatment as  

.

∑
r∈ℛ

ℙ(Wi = r)
ℙ(Wi ≠ 0)

T

∑
t=r

ψrtτATT(r, t)

∑
r∈ℛ

ℙ(Wi = r)
ℙ(Wi ≠ 0)

τATT(r, r)
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A Peek at Some Other Results 
Probability-weighted average treatment effects

Consider the estimands 

 .  

These are probability-weighted treatment effects. 

We can estimate these ratios of probabilities using the observed counts 
of units in each cohort: 

 ,  

where  is the number of units in cohort  and  is the 

total number of treated units. 

∑
r∈ℛ

ℙ(Wi = r)
ℙ(Wi ≠ 0)

T

∑
t=r

ψrtτATT(r, t)

∑
r∈ℛ

Nr

Nτ

T

∑
t=r

ψrt ̂τATT(r, t)

Nr r Nτ := ∑
r∈ℛ

Nr
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This class of estimators enjoys all of the theoretical guarantees from earlier 
under the same assumptions. 

For asymptotic normality: split the data into two subsamples: 

Half to estimate the treatment effects , 

Half to estimate the cohort probabilities .  

Make sure to split with respect to units (which are assumed to be 
independent), keeping observations at all times corresponding to the same 
unit in the same split! 

(Also possible to avoid sample splitting, if you’re willing to put up with 
asymptotic subgaussianity instead of normality and a conservative variance 
estimator. And again, I think cross-fitting might work too.)

∑
r∈ℛ

Nr

Nτ

T

∑
t=r

ψrt ̂τATT(r, t)

̂τATT(r, t)

Nr /Nτ
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We can also consider probability-weighted conditional estimands  

. 

Assume we have access to an estimator of the conditional cohort 
membership probabilities (generalized propensity scores) 

. Then we can estimate these quantities 
using  

,  

where .

∑
r∈ℛ

ℙ(Wi = r ∣ Xi = x)
ℙ(Wi ≠ 0 ∣ Xi = x)

T

∑
t=r

ψrtτCATT(r, t, x)

̂πr(x) := ℙ̂(Wi = r ∣ Xi = x)

∑
r∈ℛ

̂πr(x)
̂πτ(x)

T

∑
t=r

ψrt ̂τCATT(r, t, x)

̂πτ(x) := ∑
r∈ℛ

̂πr(x)

36
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Probability-weighted conditional average treatment effects



 

If  is consistent, we get consistency of this estimator under an 
assumption of fixed  (and therefore .  

If  is asymptotically normal, we get asymptotic normality (again, 
not in the paper yet) when we split data into three parts:  

One third to estimate ,  

One third to estimate cohort-specific covariate sample means , 

One third to estimate the .

∑
r∈ℛ

̂πr(x)
̂πτ(x)

T

∑
t=r

ψrt ̂τCATT(r, t, x)

̂πr(x)
dN pN)

̂πr(x)

̂τCATT(r, t, x)

Xr

̂πr(x)
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Simulation Studies: Setup
We generate synthetic data with  units,  time periods, 
5 cohorts, and  covariates. This results in a total of 

 observations and  parameters to estimate. 

We generate a coefficient vector where 90% of the restrictions hold (so 
only about 220 parameters actually need to be estimated). 

We repeat the following for 700 simulations: 

Generate a random Gaussian covariate vector  for each unit 

Generate random treatment assignments: each unit is either 
untreated or in one of the cohorts with equal probability 

Generate a random response using the coefficient vector and 
added noise, as specified in the earlier assumptions 

Estimate the treatment effects using four different methods

N = 120 T = 30
dN = 12

NT = 3600 pN = 2209

Xi
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Simulation Studies: Methods

We estimate the overall average treatment effect on treated units 
(using probability weighting) using four different methods: 

FETWFE: ,  selected from a set of 100 values by BIC 

ETWFE 

Penalized ETWFE (adding bridge regularization with  to 
ETWFE, but penalizing each coefficient directly rather than 
penalizing the coefficients towards each other) 

Ordinary least squares on the oversimplified model 
 (separate intercept and 

treatment effect for each cohort, added covariates) 

q = 0.5 λN

q = 0.5

yit = νr + γt + Xiκ + τrWit,r + ϵit

40



Simulation Studies: Estimation error

I evaluate the squared error of 
each method in estimating the 
average treatment effect. 

FETWFE outperforms all other 
methods at estimating the 
average treatment effect. The 
results are statistically 
significant. 

41
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Simulation Studies: Restriction Selection 
Consistency

On each simulation, I calculate 
the percentage of treatment 
effect restrictions that FETWFE 
successfully identifies. 

On average, FETWFE 
successfully decides whether or 
not to choose a restriction in 
95.0% of cases in each 
simulation (standard error: 
0.025%).
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Simulation Studies: Asymptotic 
Distribution

Second simulation study: 
, , 3 cohorts, 

. 

I construct nominal 95% confidence 
intervals for the cohort-specific 
average treatment effects  
for each cohort using the recipe from 
Theorem 6.4. 

The finite-sample confidence 
intervals don’t quite achieve the 
nominal coverage level, but they’re 
pretty close.

N = 1200 T = 5
dN = 2

τATT(r)

Cohort Coverage Standard Error
2 94.4% 0.9%
3 94.1% 0.9%
4 93.0% 1.0%
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Summary

FETWFE solves both the high bias problem of two-way fixed effects 
and the high variance problem of ETWFE. 

Given candidate restrictions to consider, FETWFE identifies the correct 
restrictions, improving estimation efficiency. 

FETWFE identifies restrictions, estimates treatment effects, and allows 
construction of asymptotically valid confidence intervals in a single step 
without data splitting, for both marginal and conditional average 
treatment effects.
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Thank you!
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