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Estimating Probabilities of Rare Events is 
Important and Hard

Classifiers struggle in the class imbalance setting where one class is 
very rare. 

Unfortunately, accurate estimates of the probabilities of rare events are 
often very important. 

Online marketing: clicking on ads and making a purchase is very 
rare. Important to accurately estimate the probability of a user 
making a purchase: click ads are sold by auction. Probability of 
purchase is needed to bid effectively. 

Health and medicine: rare diseases can be expensive to treat, 
the resources to deliver effective treatment are scarce, and it can 
be very stressful to believe you may have a rare disease. 
Accurately estimating the probability of having a rare disease is 
crucial to treat patients effectively.
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Brief Recap: Bayes Decision Boundary
Setting: binary classification with  

Definition: The Bayes decision boundary is the set of covariates 
 satisfying .  

On one side of the decision boundary, class 1 is more likely; on the 
other, class 2 is more likely. (See Section 2.2 of James et. al 2021). 

Example: the logistic regression model for  is

y ∈ {1,2}

x ∈ ℝp ℙ(y = 1 ∣ x) = ℙ(y = 2 ∣ x) = 0.5

ℙ(y = 1 ∣ x)
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Example: the logistic regression model for  is

y ∈ {1,2}

x ∈ ℝp ℙ(y = 1 ∣ x) = ℙ(y = 2 ∣ x) = 0.5

ℙ(y = 1 ∣ x)

log (
ℙ (y = 1 ∣ x)
ℙ (y = 2 ∣ x) ) = α + β⊤x .

for an intercept  and coefficients . Bayes decision 
boundary: . 

So estimating  also estimates the Bayes decision boundary. 
Estimating the Bayes decision boundary well is more or less 
equivalent to estimating probabilities well.

α ∈ ℝ β ∈ ℝp

{x : α + β⊤x = 0}
(α, β)
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Conceptualizing the Problem
We draw 50 random . 
Each  
iid.  

Binary label  generated from 
a logistic regression model. 

Dashed line: Bayes decision 
boundary 

Class 2 is rare  we don’t 
observe many points near the 
decision boundary. Estimating 
the decision boundary, and 

, is very difficult.

x ∈ ℝ2

xij ∼ Uniform(−1,1)

y

⟺

ℙ(y = 2 ∣ x)
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The estimated decision boundary (orange) 
is very bad  very bad rare probability 
estimates. (Even in large samples!)
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A Possible Solution: Leveraging Data 
From More Common Outcomes

Sometimes there are more common intermediate (ordered) outcomes. 

Online marketing: clicking on ads without making a purchase is 
much more common than clicking on ads and making a purchase. 

Health and medicine: sometimes there are intermediate 
outcomes between having a disease and being completely healthy 
(normal blood glucose → prediabetes → diabetes, normal blood 
pressure → prehypertension → hypertension, etc.) 

Estimating the decision boundaries between these more common 
outcomes is easier (less class imbalance). 

Idea: maybe the factors that are predictive of common outcomes 
can be used to improve predictions of rare outcomes.
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Same data as before, same red 
decision boundary as before. 
Class 2 is an intermediate 
outcome between classes 1 
and 3. (In previous slide, 
classes 1 and 2 were 
combined.) 

Black dashed line: Bayes 
decision boundary between 
classes 1 and 2. 

Abundant data near decision 
boundary between classes 1 
and 2  easier to learn. 

The estimated decision 
boundary between classes 1 
and 2 (orange) does seem to fit 
much better.

⟹
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Maybe we can leverage our more precise 
estimate of the decision boundary between 
classes 1 and 2 to better estimate the 
decision boundary between classes 2 and 3 

 better estimated probabilities of lying in 
class 3.
⟹
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A Classical Model Can Do This: The 
Proportional Odds Model

Proportional odds model or ordered logit model (McCullagh, 1980) for 
ordinal outcomes  assumes that the decision 
boundaries between successive categories  all have the 
same  vector separated by  intercepts:

k ∈ {1,…, K}
y ∈ {1,…, K}

β K − 1

log (
ℙ (y ≤ k ∣ x)
ℙ (y > k ∣ x) ) = αk + β⊤x, k ∈ {1,…, K − 1} .

Equivalent: true model for the random variable  is logistic 
regression for all  with all  restricted to be equal. 

Only have to estimate one unique parameter for each of the  
decision boundaries: . (Assumption of equal  means we don’t have 
to learn much from scarce data in rare categories.)

1{y > k} ∣ x
k ∈ {1,…, K − 1} β

K − 1
αk β
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Green dashed lines: 
estimated decision 
boundaries from 
proportional odds model. 
(Orange decision boundary 
is from logistic regression 
on rare class, same as 
before.) 

Proportional odds model 
does seem to yield a 
much better estimate of 
the rare decision 
boundary! 

Also yields better estimates 
of . ℙ(y = 3 ∣ x)

The Proportional Odds Model Leverages 
Data From More Common Outcomes

Problem solved? Not quite…
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What’s Wrong With Just Using The Proportional 
Odds Model? It’s Unrealistically Rigid

Proportional odds model assumes that the  vector associated with each 
decision boundary is identical. Previous slide: when an outcome is rare, 
this is an improvement over separate logistic regressions to estimate each 
decision boundary.  

But it’s still unrealistically inflexible. What if individual features have 
different influences on the decision boundaries at different levels? 

In online marketing, it could be that some ad features make the ad 
“flashier” and increase the probability of a click, but are not predictive 
of the probability of purchasing. 

Students may place different weights on factors when deciding 
whether to pursue graduate school vs. undergrad (may have more 
appealing alternatives to additional schooling, may have different 
financial constraints, etc.) 

Ideally, we’d like the more common decision boundaries to inform the 
estimation of the rare decision boundaries without imposing exact equality.

β
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PRESTO!
Proportional odds model is typically estimated by maximum likelihood:

arg min
β∈ℝp,α∈ℝK−1 { −

n

∑
i=1

log[F (αyi
+ β⊤xi) − F (αyi−1 + β⊤xi)]},

where  is the standard logistic cdf.  

(Interpretation: , so 
.) 

PRESTO allows  to differ at each decision boundary, but imposes an 
 penalty on the differences between coefficients corresponding to the 

same feature in adjacent decision boundaries:

F(t) = exp{t}/(1 + exp{t})

F (αk + β⊤x) = ℙ(y ≤ k ∣ x)
F (αk + β⊤x) − F (αk−1 + β⊤x) = ℙ(y = k ∣ x)

β
ℓ1
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PRESTO!

Inspired by the fused lasso (Tibshirani et. al. 2005): places an  
penalty not on the coefficients themselves, but on differences between 
adjacent coefficients. 

 penalty encourages coefficients for adjacent decision boundaries to 
be similar  decision boundaries with abundant data influence the 
estimated rare decision boundaries. (Improves estimation of rare 
decision boundaries compared to logistic regression.) 

But PRESTO has flexibility to allow differences in decision boundaries 
if observed data suggests it would help (improvement over proportional 
odds). 

Makes sense if we assume that differences between adjacent 
coefficient vectors are (approximately) sparse.

ℓ1

ℓ1
⟹

arg min
β∈ℝp×(K−1),α∈ℝk−1 { −

n

∑
i=1

log[F (αyi
+ β⊤

yi
xi) − F (αyi−1 + β⊤

yi−1xi)] + λ
p

∑
j=1

K−1

∑
k=2

βjk − βj,k−1 }
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Simulation Studies: Setup
500 simulations using , , and  ordered responses: 

Draw , where  for all . 

Generate  using a relaxation of proportional odds: 

 

where  (first two classes are common, last class is rare), 
 and  for random vectors 

 (probability distributions specified later). 

Estimate rare class probabilities by logistic regression on rare class, 
proportional odds, and PRESTO (penalty  selected by cross-
validation). 

Calculate MSE of estimated rare class probabilities.

n = 2500 p = 10 K = 4

X ∈ [−1,1]n×p Xij ∼ Uniform(−1,1) i, j

y ∈ ℝn

log (
ℙ (y ≤ k ∣ x)
ℙ (y > k ∣ x) ) = αk + β⊤

k x, k ∈ {1,…, K − 1},

α = (0,4,6)
β1 = (1,…,1)⊤, βk = βk−1 + ψk
ψ2, …, ψK−1 ∈ ℝp

λ
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Simulation 1: Sparse Differences

, where 
 and 

 

(Should be a favorable setting for 
PRESTO due to sparsity.) 

The results suggest that PRESTO 
does in fact estimate the rare 
probabilities more accurately!

βk = βk−1 + ψk
β1 = (1,…,1)⊤

ψjk =
0, with probability 2/3,
0.5, with probability 1/6,
−0.5,  with probability 1/6,

j ∈ {1,…, p} .

0.000

0.001

0.002

0.003

PRESTO Logit PO
Method

R
ar

e 
Pr

ob
ab

ilit
y 

M
SE

Sparse Differences

Simulation Studies  |  15



Simulation 2: Dense (Approximately 
Sparse) Differences

, where 
 and 

 

 are not sparse  should be 
harder for PRESTO. 

But  can be considered 
“approximately” sparse (some small 
entries approximately equal to 0, 
limited number of large entries that 
are important to account for). 

PRESTO still outperforms logistic 
regression and proportional odds!

βk = βk−1 + ψk
β1 = (1,…,1)⊤

ψjk ∼ Uniform(−0.5,0.5), j ∈ {1,…, p} .

ψk ⟹
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Summary
Binary classifiers struggle to estimate rare probabilities (class 
imbalance). 

If there are ordinal outcomes, a decision boundary with abundant data 
nearby can be leveraged to improve estimation of rare decision 
boundary (and rare probabilities), 

Proportional odds model allows this, but imposes exactly equality of  
vectors (unrealistically rigid). 

PRESTO relaxes proportional odds, allowing  vectors to differ but 
imposes  penalty on differences. 

This allows for best of both worlds: learn from abundant decision 
boundaries, but flexibly adapt for different decision boundaries between 
different outcomes.

β

β
ℓ1
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