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Estimating Probabilities of Rare Events is 
Important and Hard

Classifiers struggle in the class imbalance setting where one class is 
very rare. 

Unfortunately, accurate estimates of the probabilities of rare events are 
often very important. 

Health and medicine: rare diseases can be expensive to treat, 
the resources to deliver effective treatment are scarce, and it can 
be very stressful to believe you may have a rare disease. 
Accurately estimating the probability of having a rare disease is 
crucial to treat patients effectively.



Conceptualizing the Problem
We draw 50 random points. 

Binary label  generated from 
a logistic regression model. 

Dashed line: true decision 
boundary (the closer to the 
bottom left corner you are, the 
more likely to be in the red 
class). 

Because class 2 is rare, we 
don’t observe many points 
near the decision boundary. 
Estimating the decision 
boundary, and , 
is very difficult.
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The estimated decision boundary (orange) 
is very bad  very bad rare probability 
estimates. (Even asymptotically!)

⟹

We draw 50 random points. 

Binary label  generated from 
a logistic regression model. 

Dashed line: true decision 
boundary (the closer to the 
bottom left corner you are, the 
more likely to be in the red 
class). 

Because class 2 is rare, we 
don’t observe many points 
near the decision boundary. 
Estimating the decision 
boundary, and , 
is very difficult.
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A Possible Solution: Leveraging Data 
From More Common Outcomes

Sometimes there are more common intermediate (ordered) outcomes. 

Health and medicine: sometimes there are intermediate 
outcomes between having a disease and being completely healthy 
(normal blood glucose > prediabetes > diabetes, normal blood 
pressure > prehypertension > hypertension, etc.) 

Estimating the decision boundaries between these more common 
outcomes is easier (less class imbalance). 

Idea: maybe the factors that are predictive of common outcomes 
can be used to improve predictions of rare outcomes.



Same data as before, same red 
decision boundary as before. 
Class 2 is an intermediate 
outcome between class 1 and 
class 3. (In previous slide, 
classes 1 and 2 were 
combined.) 

Black dashed line: decision 
boundary between classes 1 
and 2. 

Abundant data near decision 
boundary between classes 1 
and 2  easier to learn. 

The estimated decision 
boundary between classes 1 
and 2 (orange) does seem to fit 
much better.

⟹
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A Possible Solution: Leveraging Data 
From More Common Outcomes
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Maybe we can leverage our more precise 
estimate of the decision boundary between 
classes 1 and 2 to better estimate the 
decision boundary between classes 2 and 3 

 better estimated probabilities of lying in 
class 3.
⟹

Same data as before, same red 
decision boundary as before. 
Class 2 is an intermediate 
outcome between class 1 and 
class 3. (In previous slide, 
classes 1 and 2 were 
combined.) 

Black dashed line: decision 
boundary between classes 1 
and 2. 

Abundant data near decision 
boundary between classes 1 
and 2  easier to learn. 

The estimated decision 
boundary between classes 1 
and 2 (orange) does seem to fit 
much better.

⟹



A Classical Model Can Do This: The 
Proportional Odds Model

Proportional odds model or ordered logit 
model (McCullagh, 1980) for ordinal 
outcomes  assumes that 
the decision boundaries between 
successive categories  all 
have the same slope separated by 
different intercepts. (The decision 
boundaries are parallel.) 

Only have to estimate one unique 
parameter for each of the  
decision boundaries: the intercept term. 
(Assumption of equal  means we don’t 
have to learn much from scarce data in 
rare categories.)

k ∈ {1,…, K}

y ∈ {1,…, K}

K − 1

β
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Green dashed lines: 
estimated decision 
boundaries from 
proportional odds model. 
(Orange decision boundary 
is from logistic regression 
on rare class, same as 
before.) 

Proportional odds model 
does seem to yield a 
much better estimate of 
the rare decision 
boundary! 

Also yields better estimates 
of rare class probabilities. 

The Proportional Odds Model Leverages 
Data From More Common Outcomes

Problem solved? Not quite…



So Far
So far, we’ve seen: 

Estimating the probabilities of rare events precisely can be 
important.  

Binary classifiers struggle in this setting (class imbalance). 

Sometimes more common outcomes exist that are related to the 
rare outcome (on an ordinal scale.) Estimating the decision 
boundary associated with more common outcomes is easier. 

If the common decision boundary gives us information about the 
rare decision boundary, then leveraging more precise estimate of 
the common decision boundary  better estimate the rare 
decision boundary (and, ultimately, the probabilities of rare 
events). 

So what’s wrong with just using the proportional odds model?

⟹



What’s Wrong With Just Using The Proportional 
Odds Model? It’s Unrealistically Rigid

Proportional odds model assumes that the coefficient vector associated 
with each decision boundary is identical. Earlier slides: when an 
outcome is rare, this is an improvement over separate logistic 
regressions to estimate each decision boundary.  

But it’s still unrealistically inflexible. What if individual features have 
different influences on the decision boundaries at different 
levels? 

Maybe a common set of characteristics predicts whether patients 
will suffer from a condition, but a different set of variables predicts 
how well their recovery will go. 

Ideally, we’d like the more common decision boundaries to inform the 
estimation of the rare decision boundaries without imposing exact 
equality.
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PRESTO
In brief, PRESTO estimates something like the proportional odds model, 
but allows the coefficient vectors for each decision boundary to be different. 

However, it regularizes the differences. 

The differences in the coefficient corresponding to the same feature at 
adjacent decision boundaries are penalized:  

If all of these differences equal 0, we have the proportional odds 
model. If none of them equal 0, we have completely free decision 
boundaries. 

Penalization encourages these differences to be 0 unless the data 
“overrules” this because allowing the coefficients to differ is “worth it” 
for predictive performance. 

PRESTO learns from the data which parts of the common decision 
boundaries can be used to inform estimation of the rare decision 

boundaries, without the rigid proportional odds assumption.

|βj,k − βj,k−1 |



Data Application
Data set: 3059 patients who were 
eventually diagnosed with diabetes. 
For each patient: age they were 
diagnosed with prediabetes, age 
diagnosed with diabetes, covariates. 

For each age cutoff, create an 
ordered response variable: by this 
age, did the patient have 
prediabetes, diabetes, or neither? 

Use 90% of the data to fit a model, 
hold out 10% for testing. Use each 
model to predict whether or not 
patient had diabetes at this age on 
test set. Do this 35 times for each 
age.
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Data Application

Methods used: PRESTO, logistic 
regression (solely predicting whether 
the patient has diabetes), 
proportional odds model 

PRESTO outperforms both other 
methods. 

Logistic regression fails to learn 
from the more common cases of 
patients with prediabetes. 

Proportional odds is too rigid, 
can’t adapt to a different 
decision boundary for patients 
with diabetes.
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Causal Inference
We observe some data. Some units receive a treatment, some don’t. 

For each unit, we observe some kind of numeric outcome (resting 
heart rate, blood pressure, etc.) 

Causal effect: the difference between the unit’s outcome if they do 
receive the treatment vs. their outcome if they don’t. 

Can we estimate the causal effect of the treatment?



Causal Inference
Notation:  is a treatment variable (1 for treated units, 0 for untreated). 

 is the response we observe if a unit is treated,  is the 
response we observe if unit is not treated. (Potential outcomes) 

Causal estimand (effect of treatment on the treated units): 

W
y(1) y(0)

τ = 𝔼[y(1) − y(0) ∣ W = 1]



Causal Inference
Fundamental problem of causal inference: we only observe one 
outcome for each unit. 

Under randomized, double-blind assignment, the difference in average 
outcomes for treated and untreated units is an unbiased estimate of 
the treatment effect:  

: sample mean for treated units; : sample mean for control units.

̂τ = y(1) − y(0) .

y(1) y(0)



Causal Inference

In an observational study, things are much harder. 

Maybe patients who sought treatment are more conscious of their 
health, and would have seen some improvement in outcomes 
regardless of the treatment. 

Maybe patients sought treatment because of a fluky 
measurement, and their outcome would have reverted to the mean 
regardless of treatment. 

In these cases and many others, the untreated units are not a 
reasonable baseline for comparison. 

We can’t credibly estimate treatment effects unless we find a way 
to rule these kinds of things out.



Difference-in-Differences

Suppose we observe units at two times. 

First time period: no units receive treatment.  

Second time period: some do (not randomly assigned). 

Let  be the untreated potential outcome for a unit at time , and 
 be the treated outcome. 

Goal: estimate  

, 

where  denotes that the unit was treated at time .

yt(0) t
yt(1)

τ = 𝔼[y2(1) − y2(0) ∣ W = 1]

W 2



Difference-in-Differences

 

An obvious estimator: the “before-and-after” estimator: 

Takes the mean outcome for treated units at time 2 minus their 
mean outcome at time 1, when they were untreated: 

 

where the superscript  conveys that in both means we include only 
units that were treated at time 2. 

τ = 𝔼[y2(1) − y2(0) ∣ W = 1]

̂τBA = y(1)
2 − y(1)

1 ,

(1)



Difference-in-Differences

 

 

“Before-and-after” estimator 
makes sense if we assume  is 
a good estimator for the 
units’ (unobserved) untreated 
potential outcomes at time 2, 

. 

But it might not be! Can we do 
better?

τ = 𝔼[yi2(1) − yi2(0) ∣ Wi = 1]

̂τBA = y(1)
2 − y(1)

1

y(1)
1

y(1)
2



Difference-in-Differences Estimator

Fortunately, we have some information 
about external conditions that might 
have changed from time 1 to 2—the 
observed outcomes from the 
untreated units. 

Suppose that for both units who received 
treatment and units who didn’t, the 
change in their untreated potential 
outcome from time 1 to time 2 would 
have been the same (parallel or 
common trend): 

 𝔼[y2(0) − y1(0) ∣ W = 1] = 𝔼[y2(0) − y2(0) ∣ W = 0] .



Difference-in-Differences Estimator

 

Then we can improve the before-and-
after estimator by adjusting for the 
observed change in untreated units: 

 

This is the difference-in-differences 
estimator. 

𝔼[y2(0) − y1(0) ∣ W = 1] = 𝔼[y2(0) − y2(0) ∣ W = 0] .

̂τDID = y(1)
2 − y(1)

1 − [y(0)
2 − y(0)

1 ],



Difference-in-Differences Estimator
 

Difference-in-differences estimator is unbiased under : 

(1) Common trends assumption from the last slide 
(2) “No anticipation” assumption: the treatment to come does 

not affect the potential outcome of the treated units before 
treatment. 

An equivalent way to calculate it is to estimate the coefficient  in the 
linear regression 

 

where  is a separate intercept for each unit,  is a separate intercept 
for each time, and  equals 1 if unit  was treated at time  and 0 
otherwise. This is called a two-way fixed effects regression.

̂τDID = y(1)
2 − y(1)

1 − [y(0)
2 − y(0)

1 ]

̂τ

yit = αi + γt + τWit + ϵit,

αi γt
Wit i t



Recap
For causal inference on observational data, we need some way to 
make valid comparisons between the treated and control units. 

The difference-in-differences method allows us to make these 
comparisons if we observe units at two different times, and treatment 
only occurs at the second time for only some units. 

If the change in untreated potential outcomes for control units matches 
the change in untreated potential outcomes for the treated units 
(“common trends”), this results in unbiased treatment effect estimates. 

In practice, we can calculate these estimates using a two-way fixed 
effects linear regression. 

Can we extend this further, to more general settings? 
If we observe covariates, can we use them to relax our 

assumptions?



Two-Way Fixed Effects

 

Now that we’re calculating a linear regression… 

Can we include controls (covariates)  in the regression to 
improve precision? 

Can we allow an arbitrary number of time periods instead of just 
2? (And can we allow units to start receiving treatment at arbitrary 
times after time 1?) 

In general: no! This model will be biased. 

How do we need to change the model?

yit = αi + γt + τWit + ϵit,

X
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Extended Two-Way Fixed Effects
Notation: suppose we observe  time periods. We have cohorts that 
receive treatment at times  (or some subset of those 
times).  

Wooldridge (2021): linear regression with covariates is okay, but we 
need more parameters. 

Covariates must be time-invariant (pre-treatment) 

Estimate separate treatment effects for each cohort and time,  

Estimate separate covariate coefficient vectors for each time and 
for each cohort 

Include interaction terms between covariates and treatment effects 

Wooldridge calls this the extended two-way fixed effects model.

T
r = {2,3,…, T}

τrt



Extended Two-Way Fixed Effects
Intuitively, we expect extended two-way fixed effects to give use more 
precise estimates. What exactly have we gained? 

Unbiased estimation of treatment effects in a much more general 
setting 

No-anticipation and common trends assumptions can be relaxed—
we can allow for anticipatory effects, or differing from common 
trends, as long as these can be explained by covariates. 

What price do we pay? 

We have a lot of parameters to estimate! If there are lots of time 
periods or covariates, our parameter estimates may be too noisy 
to be useful. 

In other words, extended two-way fixed effects may be too flexible.  

Intuition: we can improve this with regularization!



Extended Two-Way Fixed Effects
Wooldridge proposes an ad hoc remedy for the problem of too many 
parameters: assume some of the parameters are equal 

For example: maybe the treatment effects don’t actual differ in time 
since treatment. So assume  for all cohorts at all post-
treatment times in order to reduce the number of parameters to 
estimate. 

Or, weaken this a little: assume there is an “early treatment” and “late 
treatment” effect, so that we only have two treatment effects to 
estimate for each cohort instead of . 

Problem: is this wishful thinking?  

Unless these assumptions are well-justified, we risk re-introducing the 
bias we removed by adding these parameters in the first place. 

Can we use the fact that some of these restrictions probably exist in 
the data without putting our “thumb on the scale” by selecting the 

restrictions by hand?

τrt = τr

T − r + 1
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Fused Extended Two-Way Fixed Effects
Idea: let’s reduce the number of parameters to estimate using 
regularization.  

Encode our expectations about which parameters might be equal 
in the way that we estimate the model, then allow the model to 
learn the restrictions from the data. 

Estimate the extended two-way fixed effects regression, but add 
penalty terms that align with our belief that some of the parameters are 
actually equal 

Example: for each cohort, penalize the differences . 
This encodes our belief that the treatment effects in adjacent times 
are probably close together, so we can set them equal unless the 
data gives us a good reason to estimate separate values for 
these parameters. 

We outsource the choice of which of these restrictions to impose to the 
data.

|τr,t+1 − τrt |



Theoretical Guarantees (High-Level 
Summary)

Assumptions 

No anticipation of treatment of units that cannot be explained by 
the time-invariant covariates .  

Common trends between control units and each cohort’s untreated 
potential outcomes, with differences that can be explained by  
allowed. 

Some of the restrictions we discussed exist (but we don’t have to 
worry about knowing which ones to pick). 

Treatment status is random (in the sense that we couldn’t have 
predicted perfectly in advance which units would be treated), but 
allowed to be biased as long as the common trends assumption 
holds. Each unit must have positive probability of being assigned 
to each cohort, or the never-treated group.

X

X



Theoretical Guarantees (High-Level 
Summary)

Theorem 5.1: Fused extended two-way fixed effects (FETWFE) 
consistently estimates the treatment effects (as the number of units 
goes to infinity, the estimated treatment effects become arbitrarily 
precise). 

Theorem 5.2: FETWFE identifies the correct restrictions with 
probability tending to 1 as the number of units goes to infinity. 

Theorem 5.3: FETWFE is an “oracle” procedure: 

Even if the number of covariates grows asymptotically, FETWFE 
converges at the same rate as an ordinary least squares model 
estimated using all of the correct restrictions. 

The asymptotic variance of FETWFE is not affected by the 
parameters we didn’t need to separately estimate. 

There is a finite-sample variance estimator that allows us to 
construct confidence intervals for a variety of treatment effect 
estimators.



Simulation Studies: Setup
We generate synthetic data with 120 units,  time periods, 5 
cohorts, and 12 covariates. This results in a total of 3600 observations 
and 2209 parameters to estimate. 

We generate a coefficient vector where 90% of the restrictions hold (so 
only about 221 parameters actually need to be estimated). 

We repeat the following for 350 simulations: 

Generate a random (time-invariant) covariate vector for each unit 

Generate random treatment assignments: each unit is either 
untreated or in one of the cohorts with equal probability 

Generate a random response using the coefficient vector and 
added noise 

Estimate the treatment effects using four different methods

T = 30



Simulation Studies: Methods

We estimate the treatment effects using four different methods: 

FETWFE 

ETWFE 

Penalized ETWFE (so adding regularization to ETWFE, but 
penalizing each coefficient directly rather than using fusion 
penalties that penalize the coefficients towards each other) 

Ordinary least squares on the oversimplified model 
 (separate intercept for each 

cohort, separate treatment effect for each cohort, added 
covariates) 

yit = νr + γt + Xiκ + τrWit,r + ϵit



Simulation Studies: Estimation error

We evaluate the squared error 
of each method in estimating 
the average treatment effect. 

FETWFE outperforms all other 
methods at estimating the 
average treatment effect. The 
results are statistically 
significant. 
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Simulation Studies: Restriction Selection 
Consistency

On each simulation, we 
calculate the percentage of 
treatment effect restrictions that 
FETWFE successfully identifies. 

On average, FETWFE identifies 
92.1% of the restrictions in each 
simulation (standard error: 
0.084%).  
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Simulation Studies: Asymptotic 
Distribution

We find that the distribution of Z 
statistics calculated from FETWFE in 
the previous simulation study is not 
approximately normal, so we conduct 
another simulation study to see if the 
asymptotics “hold up” with large 
enough samples. 

We generate data in the same way 
as the previous simulation study, but 
with 1500 units,  time periods, 
5 cohorts, and 2 covariates. 

We construct nominal 95% 
confidence intervals for the treatment 
effect in each simulation. 94.6% of 
the confidence intervals contain the 
true treatment effect.

T = 15
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“…statistical conclusions are robust or stable to appropriate 
perturbations to data.” (Yu 2013)

Statistical Stability



Take repeated subsamples of size . ⌊n /2⌋

Stability Selection  
(Meinshausen and Buhlmann 2010)

Run lasso on each subsample with pre-selected .λ

Return features that are chosen by lasso in a proportion of subsamples 
greater than pre-selected threshold . (Or, return top  features.)τ s

Data  
(  observations)n

Subsample 1 (  
random observations)

⌊n /2⌋

Subsample 2 (  
random observations)

⌊n /2⌋

           Subsample  B

⋮

Lasso
Selected set 1

Selected set 2

Selected Set B

⋮

: 
proportion of 

selected sets that 
include feature 

Π̂B( j )

j

Selected set: 

{j : Π̂B( j ) > τ}
Lasso

Lasso



Adds stability to any feature selection method (e.g. lasso). 

Guaranteed control of false discoveries under very mild assumptions.

Desirable Properties of Stability Selection
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“Highly correlated variables… split the vote” (Shah and Samworth 
2013).  

Assume we are interested in a model to make good out-of-sample 
predictions. We want stable feature selection, so we try stability 
selection with the lasso as the base procedure. 

Suppose  is in the true model. We don’t observe , but we observe  
features  that are highly correlated with  (proxies). 

Lasso tends to choose one proxy on each fit, nearly at random. 

Each proxy’s selection proportion is deflated by a factor of  (relative 
to what the selection proportion of  would have been). Sorting 
features in order of their selection proportion results in a poor ranking 
of features.

Z Z q
X(proxies) Z

1/q
Z

An Observation
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For each feature , 

. 

Return features with .  

(Alternatively, return  features with highest selection proportions, or 
return list of features ranked in descending order of . 

j ∈ [p]

Π̂B( j) :=
1
B

B

∑
b=1

𝕀 {j ∈ ̂Sλ (Ab)}
Π̂B( j) > τ

s
Π̂B( j)

Recall Stability Selection  
(Meinshausen and Buhlmann 2010)

Proportion of time 
feature  is selectedj

Number of subsamples taken

 subsamplebth

indices of the features selected by the  
lasso with parameter  on sample λ Ab



Returns a ranked list of selected clusters of features, rather than features. 

Let  denote the set of  unique clusters. 

For each cluster , compute 

. 

Return clusters with . (Alternatively, return  clusters with 
highest selection proportions, or return list of clusters ranked in 
descending order of . 

𝒞 := {C1, …, CK} K ≤ p

Ck

Θ̂B (Ck) :=
1
B

B

∑
b=1

𝕀 {Ck ∩ ̂Sλ (Ab) ≠ ∅}

Θ̂B (Ck) > τ s

Θ̂B (Ck)

Proportion of time a 
feature from cluster 

 is selectedCk

Number of subsamples taken

 subsamplebth

indices of the features selected by the  
lasso with parameter  on sample λ Ab

Generalized Stability Selection



Also keep track of  for each individual feature. 

Then for each cluster, compute weights  to assign to 
each member of the cluster. Return weights with clusters. 

For regressions, construct a synthetic feature  for each cluster. 
Regress response against  synthetic features yielded by selected 
clusters.

Π̂B( j)

wk ∈ Δ Ck −1

X⋅Ck
wk

s

Generalized Stability Selection



Three proposals to determine weights: 

1. Sparse generalized stability selection: Assign weight 1 to the 
most frequently selected cluster member, and 0 to the others. 

2. Averaged generalized stability selection: Assign weight   
to every cluster member. 

3. Weighted averaged generalized stability selection: Assign weight 

 

to each cluster member. 

1/ Ck

Π̂B( j)
∑j′ ∈Ck

Π̂B( j′ )

Generalized Stability Selection
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Sparse Generalized Stability Selection
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Sparse Generalized Stability Selection
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An organism's DNA typically has millions of base positions, and at each 
base position there is typically one more common single-nucleotide 
polymorphism (SNP) and one less common one. 

Due to linkage disequilibrium, nearby SNPs tend to be highly 
correlated—cluster structure in data. 

Goal of GWAS: use regression methods to identify SNPs associated 
with response (useful for e.g. diagnosing, preventing, and treating 
disease). 

: an  matrix of SNPs from Arabidopsis 
thaliana plants. Each predictor takes on either the value 0 (if both 
SNPs at that position take on the less common value) or 1. 

: logarithm of flowering time (in days) at  C.

X (n = 1058) × (p = 1000)

y 10∘

Real Data Application—Genome-Wide 
Association Study



We repeated 100 replications of the following procedure: 

Randomly divide the data into feature selection (40% of the data), 
training (40% of the data), and test sets. 

Use the feature selection and training data to estimate clusters of 
SNPs. 

Carry out each feature selection method on the feature selection set, 
yielding selected sets of various sizes. 

For each method and each model size, estimate a linear model via 
OLS on the training set using the selected features. Generate 
predictions from each model on the test set, and evaluate the MSE. 

Also, evaluate the stability of each method at each model size across all 
100 replications.

Real Data Application—Genome-Wide 
Association Study



Real Data Application—Genome-Wide 
Association Study
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Stability selection with lasso has desirable properties, but fails in case 
of clustered features. 

Selecting one low-noise proxy (or a cluster of them) improves 
predictive performance when the true signal is not observed. 

Generalized stability selection exploits cluster structure to correct 
stability selection’s failure in this regime, allowing for the stable 
identification of important clustered features.

Summary
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Motivating Simulation
Repeat the prior procedure 1000 times. 

On each iteration: 

Select feature sets of sizes  using:  

Stability selection with the lasso as the base procedure (  chosen in 
advance by cross-validation) 

Lasso 

Generate a training set of size .  

Estimate linear models on selected variables using OLS. 

Calculate the mean squared error between each model’s predictions and 
the expected value of the response:  

.

{1,…,11}

λ

n = 10,000

μ = 1.5 ⋅ Z+
10

∑
j=1

1
j

⋅ X⋅,( j+10)

PROBLEM WITH STABILITY SELECTION  |  10
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Simulation Studies: Setup
500 simulations using , , and  ordered responses: 

Draw , where  for all . 

Generate  using a relaxation of proportional odds: 

 

where  (first two classes are common, last class is rare), 
 and  for random vectors 

 (probability distributions specified later). 

Estimate rare class probabilities by logistic regression on rare class, 
proportional odds, and PRESTO (penalty  selected by cross-
validation). 

Calculate MSE of estimated rare class probabilities.

n = 2500 p = 10 K = 4

X ∈ [−1,1]n×p Xij ∼ Uniform(−1,1) i, j

y ∈ ℝn

log (
ℙ (y ≤ k ∣ x)
ℙ (y > k ∣ x) ) = αk + β⊤

k x, k ∈ {1,…, K − 1},

α = (0,4,6)
β1 = (1,…,1)⊤, βk = βk−1 + ψk
ψ2, …, ψK−1 ∈ ℝp

λ
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Simulation 1: Sparse Differences

, where 
 and 

 

(Should be a favorable setting for 
PRESTO due to sparsity.) 

The results suggest that PRESTO 
does in fact estimate the rare 
probabilities more accurately!

βk = βk−1 + ψk
β1 = (1,…,1)⊤

ψjk =
0, with probability 2/3,
0.5, with probability 1/6,
−0.5,  with probability 1/6,

j ∈ {1,…, p} .
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Simulation 2: Dense (Approximately 
Sparse) Differences

, where 
 and 

 

 are not sparse  should be 
harder for PRESTO. 

But  can be considered 
“approximately” sparse (some small 
entries approximately equal to 0, 
limited number of large entries that 
are important to account for). 

PRESTO still outperforms logistic 
regression and proportional odds!

βk = βk−1 + ψk
β1 = (1,…,1)⊤

ψjk ∼ Uniform(−0.5,0.5), j ∈ {1,…, p} .

ψk ⟹

ψk
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Summary
Binary classifiers struggle to estimate rare probabilities (class 
imbalance). 

If there are ordinal outcomes, a decision boundary with abundant data 
nearby can be leveraged to improve estimation of rare decision 
boundary (and rare probabilities), 

Proportional odds model allows this, but imposes exactly equality of  
vectors (unrealistically rigid). 

PRESTO relaxes proportional odds, allowing  vectors to differ but 
imposing  penalty on differences. 

This allows for best of both worlds: learn from abundant decision 
boundaries, but flexibly adapt for different decision boundaries between 
different outcomes.

β

β
ℓ1
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